BBSRC NLD Doctoral Training Partnership: Defining the links between ROS and inflammageing in a human model of neutrophil-driven inflammation

Description

Neutrophils are cells of the immune system that provide protection against infection from micro-organisms (bacteria, fungi). Neutrophils produce large amounts of toxic reactive oxygen species (ROS) which are an important part of the killing repertoire that induce mutations to DNA, lipids and proteins. The production of ROS by the NADPH oxidase (NOX2) enzyme also activates granule enzymes (myeloperoxidase, elastase, gelatinase) which are microbiocidal and help to kill microorganisms. Intracellular signalling also induced by ROS is essential for the release of neutrophil extracellular traps (NETs). NETs are beneficial during infection but in the case of sterile inflammation (e.g. inflammation associated with ageing, “inflammageing”) NETs and ROS promote inflammation and damage host tissues. Mitochondrial ROS production (mtROS) also promotes NET release in the absence of NOX2-derived ROS.

Plasma membrane receptors that activate ROS production are well characterised on neutrophils. However the down-stream effects of intracellular ROS production are less well understood and there is evidence that ROS may be either pro-inflammatory (activating production of inflammatory molecules and NETs) or anti-inflammatory (inducing a stress response that induces cell death). Neutrophil ROS production clearly represents an important physiological mechanism in regulating the resolution of inflammation after infection and the dysregulation of inflammation during inflammageing.

Plan of work

Models: (1) Liverpool. Human neutrophils activated with cytokines to induce inflammageing. (2) Newcastle. CRISPR mutant and wild-type C. elegans.

Objective 1: Identify the changes to the neutrophil proteome and phospho-proteome that are induced in response to ROS (neutrophil redox proteome) over 20 min using data-independent acquisition mass spectrometry (DIA MS). (Liverpool)

Objective 2: Use CRISPR mutant C. elegans to determine the effect of key phosphorylation events (identified Obj1) on the innate immune response to C. albicans and S. aureus. (Newcastle)

Objective 3: Inhibit ROS and mtROS chemically to determine the effect of ROS production on pro-inflammatory neutrophil functions (NET release, cell death, production of inflammatory molecules, gene expression) and bacterial killing. (Liverpool)

The project will increase our understanding of the signalling mechanisms regulating ROS production will provide important insight into neutrophil biology in healthy ageing and ways of restoring homeostasis during inflammaging. It will also provide training in human and non-human models of the immune system and transferrable skills in phospho-proteomics.

HOW TO APPLY:

Applications should be made by emailing  with:

  • a CV (including contact details of at least two academic (or other relevant) referees);
  • a covering letter – clearly stating your first-choice project, and optionally 2nd ranked project, as well as including whatever additional information you feel is pertinent to your application; you may wish to indicate, for example, why you are particularly interested in the selected project(s) and at the selected University;
  • copies of your relevant undergraduate degree transcripts and certificates;
  • a copy of your passport (photo page).

A GUIDE TO THE FORMAT REQUIRED FOR THE APPLICATION DOCUMENTS IS AVAILABLE AT https://www.nld-dtp.org.uk/how-applyApplications not meeting these criteria may be rejected.

In addition to the above items, please email a completed copy of the Additional Details Form (as a Word document) to . A blank copy of this form can be found at: https://www.nld-dtp.org.uk/how-apply.

Informal enquiries may be made to 

The deadline for all applications is 12noon on Monday 22nd July 2024.

Part-Time Study Options

All NLD DTP PhDs are available as part time or full time, with part time being a minimum of 50% of full time. Please discuss potential part time arrangements with the primary supervisor before applying to the programme.

Project CASE Status

This project is not a CASE project. While individual applicant quality is our overriding criterion for selection, the NLD DTP has a commitment to fund 8 CASE projects per year - as such, CASE projects may be favoured in shortlisting applicants when candidates are otherwise deemed to be equal or a consensus on student quality cannot be reached. 

 

Availability

Open to UK applicants

Funding information

Funded studentship

BBSRC NLD DTP programme – starting October 2024. UKRI provide the following funding for 4 years:

• Stipend (2024/25 UKRI rate £19,237)

• Tuition Fees at UK fee rate (2024/25 rate £4,786)

• Research support and training grant (RTSG) Note - UKRI funding only covers UK (Home) fees.

 

Supervisors

References

1. Rheumatoid arthritis synovial fluid neutrophils drive inflammation through production of chemokines, reactive oxygen species and neutrophil extracellular traps. Frontiers in Immunology 2021, 11:584116. https://doi.org/10.3389/fimmu.2020.584116
2. Profiling the Human Phosphoproteome to Estimate the True Extent of Protein Phosphorylation. J Proteome Research 2022, 21, 6, 1510–1524.
3. Evaluation of parameters for confident phosphorylation site localization using an orbitrap fusion tribrid mass spectrometer. J Proteome Research 2017, 16:9 3448-3459.
4. Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Sci Signal. 2020 13(639)
5. A peroxiredoxin-P38 MAPK scaffold increases MAPK activity by MAP3K-independent mechanisms. Mol Cell. 2023 Sep 7;83(17):3140-3154.e7. doi: 10.1016/j.molcel.2023.07.018. Epub 2023 Aug 11.