Research outputs
2025
A mathematical model of vaccine hesitancy: Analysing the impact of political trends and the interaction across age and education groups in the USA
Public Goods Games in Disease Evolution and Spread
Morison, C., Fic, M., Marcou, T., Mohamadichamgavi, J., Redondo Antón, J., Sayyar, G., . . . Ali, W. (2025). Public Goods Games in Disease Evolution and Spread. Dynamic Games and Applications. doi:10.1007/s13235-025-00619-5
2024
Deterministic epidemic models overestimate the basic reproduction number of observed outbreaks.
Ali, W., Overton, C. E., Wilkinson, R. R., & Sharkey, K. J. (2024). Deterministic epidemic models overestimate the basic reproduction number of observed outbreaks.. Infectious Disease Modelling, 9(3), 680-688. doi:10.1016/j.idm.2024.02.007
2023
Eco-evolutionary dynamics in finite network-structured populations with migration.
Pattni, K., Ali, W., Broom, M., & Sharkey, K. J. (2023). Eco-evolutionary dynamics in finite network-structured populations with migration.. Journal of theoretical biology, 111587. doi:10.1016/j.jtbi.2023.111587
2019
Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type
Zada, A., Ali, W., & Park, C. (2019). Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. Applied Mathematics and Computation, 350, 60-65. doi:10.1016/j.amc.2019.01.014
2018
Ulam’s-Type Stability of First-Order Impulsive Differential Equations with Variable Delay in Quasi–Banach Spaces
Wang, J., Zada, A., & Ali, W. (2018). Ulam’s-Type Stability of First-Order Impulsive Differential Equations with Variable Delay in Quasi–Banach Spaces. International Journal of Nonlinear Sciences and Numerical Simulation, 19(5), 553-560. doi:10.1515/ijnsns-2017-0245
2017
Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses
Zada, A., Ali, W., & Farina, S. (2017). Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses. Mathematical Methods in the Applied Sciences, 40(15), 5502-5514. doi:10.1002/mma.4405