Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

What type of publication do you want to show?

2024

Self Data Augmentation for Open Domain Question Answering

Zhang, Q., Zheng, M., Chen, S., Liu, H., & Fang, M. (n.d.). Self Data Augmentation for Open Domain Question Answering. ACM Transactions on Information Systems. doi:10.1145/3707449

DOI
10.1145/3707449
Journal article

Augmenting biomedical named entity recognition with general-domain resources.

Yin, Y., Kim, H., Xiao, X., Wei, C. H., Kang, J., Lu, Z., . . . Chen, Q. (2024). Augmenting biomedical named entity recognition with general-domain resources.. Journal of biomedical informatics, 159, 104731. doi:10.1016/j.jbi.2024.104731

DOI
10.1016/j.jbi.2024.104731
Journal article

Unsupervised Multiple Choices Question Answering Via Universal Corpus

Zhang, Q., Ge, H., Chen, X., & Fang, M. (2024). Unsupervised Multiple Choices Question Answering Via Universal Corpus. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 11771-11775). IEEE. doi:10.1109/icassp48485.2024.10446538

DOI
10.1109/icassp48485.2024.10446538
Conference Paper

Human-Guided Moral Decision Making in Text-Based Games

Shi, Z., Fang, M., Chen, L., Du, Y., & Wang, J. (n.d.). Human-Guided Moral Decision Making in Text-Based Games. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 21574-21582). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v38i19.30155

DOI
10.1609/aaai.v38i19.30155
Conference Paper

Large Language Models Are Neurosymbolic Reasoners

Fang, M., Deng, S., Zhang, Y., Shi, Z., Chen, L., Pechenizkiy, M., & Wang, J. (n.d.). Large Language Models Are Neurosymbolic Reasoners. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 17985-17993). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v38i16.29754

DOI
10.1609/aaai.v38i16.29754
Conference Paper

Dynamic Truck–UAV Collaboration and Integrated Route Planning for Resilient Urban Emergency Response

Long, Y., Xu, G., Zhao, J., Xie, B., & Fang, M. (2023). Dynamic Truck–UAV Collaboration and Integrated Route Planning for Resilient Urban Emergency Response. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT. doi:10.1109/TEM.2023.3299693

DOI
10.1109/TEM.2023.3299693
Journal article

RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering

Zhang, Z., Fang, M., & Chen, L. (2024). RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp. 6963-6975).

Conference Paper

TASK ADAPTATION FROM SKILLS: INFORMATION GEOMETRY, DISENTANGLEMENT, AND NEW OBJECTIVES FOR UNSUPERVISED REINFORCEMENT LEARNING

Yang, Y., Zhou, T., He, Q., Han, L., Pechenizkiy, M., & Fang, M. (2024). TASK ADAPTATION FROM SKILLS: INFORMATION GEOMETRY, DISENTANGLEMENT, AND NEW OBJECTIVES FOR UNSUPERVISED REINFORCEMENT LEARNING. In 12th International Conference on Learning Representations, ICLR 2024.

Conference Paper

2023

Prescribed Safety Performance Imitation Learning From a Single Expert Dataset

Cheng, Z., Shen, L., Zhu, M., Guo, J., Fang, M., Liu, L., . . . Tao, D. (2023). Prescribed Safety Performance Imitation Learning From a Single Expert Dataset. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 45(10), 12236-12249. doi:10.1109/TPAMI.2023.3287908

DOI
10.1109/TPAMI.2023.3287908
Journal article

Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost

Yin, L., Liu, S., Fang, M., Huang, T., Menkovski, V., & Pechenizkiy, M. (n.d.). Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 37 (pp. 10945-10953). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v37i9.26297

DOI
10.1609/aaai.v37i9.26297
Conference Paper

Dual-Modality Co-Learning for Unveiling Deepfake in Spatio-Temporal Space

Guan, J., Zhou, H., Guo, Z., Hu, T., Deng, L., Quan, C., . . . Zhao, Y. (2023). Dual-Modality Co-Learning for Unveiling Deepfake in Spatio-Temporal Space. In PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023 (pp. 85-94). doi:10.1145/3591106.3592284

DOI
10.1145/3591106.3592284
Conference Paper

Shared dynamics learning for large-scale traveling salesman problem

Xu, Y., Fang, M., Chen, L., Du, Y., Xu, G., & Zhang, C. (2023). Shared dynamics learning for large-scale traveling salesman problem. ADVANCED ENGINEERING INFORMATICS, 56. doi:10.1016/j.aei.2023.102005

DOI
10.1016/j.aei.2023.102005
Journal article

A Survey for Efficient Open Domain Question Answering

Zhang, Q., Chen, S., Xu, D., Cao, Q., Chen, X., Cohn, T., & Fang, M. (2023). A Survey for Efficient Open Domain Question Answering. In Proceedings of the Annual Meeting of the Association for Computational Linguistics Vol. 1 (pp. 14447-14465).

Conference Paper

Dynamic Sparsity Is Channel-Level Sparsity Learner

Yin, L., Li, G., Fang, M., Shen, L., Huang, T., Wang, Z., . . . Liu, S. (2023). Dynamic Sparsity Is Channel-Level Sparsity Learner. In Advances in Neural Information Processing Systems Vol. 36.

Conference Paper

How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances

Zhang, Z., Fang, M., Chen, L., Namazi-Rad, M. R., & Wang, J. (2023). How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances. In EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings (pp. 8289-8311).

Conference Paper

REST: Enhancing Group Robustness in DNNs Through Reweighted Sparse Training

Zhao, J., Yin, L., Liu, S., Fang, M., & Pechenizkiy, M. (2023). REST: Enhancing Group Robustness in DNNs Through Reweighted Sparse Training. In Unknown Conference (pp. 313-329). Springer Nature Switzerland. doi:10.1007/978-3-031-43415-0_19

DOI
10.1007/978-3-031-43415-0_19
Conference Paper

STAY MORAL AND EXPLORE: LEARN TO BEHAVE MORALLY IN TEXT-BASED GAMES

Shi, Z., Fang, M., Xu, Y., Chen, L., & Du, Y. (2023). STAY MORAL AND EXPLORE: LEARN TO BEHAVE MORALLY IN TEXT-BASED GAMES. In 11th International Conference on Learning Representations, ICLR 2023.

Conference Paper

Self-imitation Learning for Action Generation in Text-based Games

Shi, Z., Xu, Y., Fang, M., & Chen, L. (2023). Self-imitation Learning for Action Generation in Text-based Games. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics (pp. 703-726). Association for Computational Linguistics. doi:10.18653/v1/2023.eacl-main.50

DOI
10.18653/v1/2023.eacl-main.50
Conference Paper

2022

Learning Granularity-Unified Representations for Text-to-Image Person Re-identification

Shao, Z., Zhang, X., Fang, M., Lin, Z., Wang, J., & Ding, C. (2022). Learning Granularity-Unified Representations for Text-to-Image Person Re-identification. In Proceedings of the 30th ACM International Conference on Multimedia. ACM. doi:10.1145/3503161.3548028

DOI
10.1145/3503161.3548028
Conference Paper