Skip to main content

Publications

What type of publication do you want to show?

2024

Large Language Models Are Neurosymbolic Reasoners

Fang, M., Deng, S., Zhang, Y., Shi, Z., Chen, L., Pechenizkiy, M., & Wang, J. (n.d.). Large Language Models Are Neurosymbolic Reasoners. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 17985-17993). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v38i16.29754

DOI
10.1609/aaai.v38i16.29754
Conference Paper

Dynamic Truck–UAV Collaboration and Integrated Route Planning for Resilient Urban Emergency Response

Long, Y., Xu, G., Zhao, J., Xie, B., & Fang, M. (2023). Dynamic Truck–UAV Collaboration and Integrated Route Planning for Resilient Urban Emergency Response. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT. doi:10.1109/TEM.2023.3299693

DOI
10.1109/TEM.2023.3299693
Journal article

2023

Prescribed Safety Performance Imitation Learning From a Single Expert Dataset

Cheng, Z., Shen, L., Zhu, M., Guo, J., Fang, M., Liu, L., . . . Tao, D. (2023). Prescribed Safety Performance Imitation Learning From a Single Expert Dataset. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 45(10), 12236-12249. doi:10.1109/TPAMI.2023.3287908

DOI
10.1109/TPAMI.2023.3287908
Journal article

Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost

Yin, L., Liu, S., Fang, M., Huang, T., Menkovski, V., & Pechenizkiy, M. (n.d.). Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 37 (pp. 10945-10953). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v37i9.26297

DOI
10.1609/aaai.v37i9.26297
Conference Paper

Dual-Modality Co-Learning for Unveiling Deepfake in Spatio-Temporal Space

Guan, J., Zhou, H., Guo, Z., Hu, T., Deng, L., Quan, C., . . . Zhao, Y. (2023). Dual-Modality Co-Learning for Unveiling Deepfake in Spatio-Temporal Space. In PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023 (pp. 85-94). doi:10.1145/3591106.3592284

DOI
10.1145/3591106.3592284
Conference Paper

Shared dynamics learning for large-scale traveling salesman problem

Xu, Y., Fang, M., Chen, L., Du, Y., Xu, G., & Zhang, C. (2023). Shared dynamics learning for large-scale traveling salesman problem. ADVANCED ENGINEERING INFORMATICS, 56. doi:10.1016/j.aei.2023.102005

DOI
10.1016/j.aei.2023.102005
Journal article

A Survey for Efficient Open Domain Question Answering

Zhang, Q., Chen, S., Xu, D., Cao, Q., Chen, X., Cohn, T., & Fang, M. (2023). A Survey for Efficient Open Domain Question Answering. In Proceedings of the Annual Meeting of the Association for Computational Linguistics Vol. 1 (pp. 14447-14465).

Conference Paper

Dynamic Sparsity Is Channel-Level Sparsity Learner

Yin, L., Li, G., Fang, M., Shen, L., Huang, T., Wang, Z., . . . Liu, S. (2023). Dynamic Sparsity Is Channel-Level Sparsity Learner. In Advances in Neural Information Processing Systems Vol. 36.

Conference Paper

Self-imitation Learning for Action Generation in Text-based Games

Shi, Z., Xu, Y., Fang, M., & Chen, L. (2023). Self-imitation Learning for Action Generation in Text-based Games. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics (pp. 703-726). Association for Computational Linguistics. doi:10.18653/v1/2023.eacl-main.50

DOI
10.18653/v1/2023.eacl-main.50
Conference Paper

2022

Learning Granularity-Unified Representations for Text-to-Image Person Re-identification

Shao, Z., Zhang, X., Fang, M., Lin, Z., Wang, J., & Ding, C. (2022). Learning Granularity-Unified Representations for Text-to-Image Person Re-identification. In Proceedings of the 30th ACM International Conference on Multimedia. ACM. doi:10.1145/3503161.3548028

DOI
10.1145/3503161.3548028
Conference Paper