Towards Transcendental Thurston Theory

Nikolai Prochorov Université d'Aix-Marseille

Work in progress

July 9, 2024

Motivation

$$f(z) = z^{2} + c, c \approx -0.12 + 0.74i$$

$$0 \xrightarrow{2} c \xrightarrow{1} c^{2} + c$$

Motivation

$$f(z) = z^{2} + c, c \approx -0.12 + 0.74i$$

$$0 \xrightarrow{2} c \xrightarrow{1} c^{2} + c$$

Transcendental example

$$g(z) = -\pi \cos(z)/2.$$

$$P_g = \{a_1, a_2, a_3\} = \{-\pi/2, 0, \pi/2\}.$$

Transcendental example

$$g(z) = -\pi \cos(z)/2.$$

$$P_g = \{a_1, a_2, a_3\} = \{-\pi/2, 0, \pi/2\}.$$

Another transcendental example

Question

 $\mathsf{psf} \; \mathsf{entire} \; \mathsf{map} \; {\longrightarrow} \; \mathsf{combinatorial} \; \mathsf{model}$

Question

 $\mathsf{psf} \; \mathsf{entire} \; \mathsf{map} \; {\longrightarrow} \; \mathsf{combinatorial} \; \mathsf{model}$

 $\mathsf{psf} \ \mathsf{entire} \ \mathsf{map} \ \overset{???}{\longleftarrow} \ \mathsf{combinatorial} \ \mathsf{model}$

Definition.

Let X and Y be two orientable topological surfaces. We call a map $f: X \to Y$ topologically holomorphic if f is continuous, open, discrete, and orientation-preserving.

Definition.

Let X and Y be two orientable topological surfaces. We call a map $f: X \to Y$ topologically holomorphic if f is continuous, open, discrete, and orientation-preserving.

Definition.

Map $f: X \to S^2$ is called Thurston map if $X = S^2$ or $X = S^2 - \{e\}$ and f is topologically holomorphic, postsingularly finite, and of parabolic type.

Definition.

Let X and Y be two orientable topological surfaces. We call a map $f: X \to Y$ topologically holomorphic if f is continuous, open, discrete, and orientation-preserving.

Definition.

Map $f: X \to S^2$ is called Thurston map if $X = S^2$ or $X = S^2 - \{e\}$ and f is topologically holomorphic, postsingularly finite, and of parabolic type.

Example.

• meromorphic psf maps;

Definition.

Let X and Y be two orientable topological surfaces. We call a map $f: X \to Y$ topologically holomorphic if f is continuous, open, discrete, and orientation-preserving.

Definition.

Map $f: X \to S^2$ is called Thurston map if $X = S^2$ or $X = S^2 - \{e\}$ and f is topologically holomorphic, postsingularly finite, and of parabolic type.

Example.

- meromorphic psf maps;
- $\varphi \circ f \circ \psi$, where f is a meromorphic psf map, $\varphi, \psi \in \mathrm{Homeo}^+(S^2)$, and $\varphi(P_f) = \psi(P_f) = P_f$.

Combinatorial model was Thurston map

Isotopies

Definition.

Let f and g be two Thurston maps with the same postsingular set P. We say that f is isotopic to g if

- $f = g \circ \varphi$ and $\varphi \in \text{Homeo}^+(S^2)$;
- φ is homotopic rel. P to id_{S^2} .

Combinatorial equivalence

Definition.

Two Thurston maps f and g are combinatorially equivalence (or Thurston equivalent) if there exist two other Thurston maps \widetilde{f} and \widetilde{g} such that

- f and \widetilde{f} are isotopic,
- g and \widetilde{g} are isotopic,
- \widetilde{f} and \widetilde{g} are (topologically) conjugate.

Definition.

Thurston map f is called realized if it is combinatorially equivalent to a meromorphic postsingularly finite map. Otherwise, it is called obstructed.

Definition.

Thurston map f is called realized if it is combinatorially equivalent to a meromorphic postsingularly finite map. Otherwise, it is called obstructed.

When given Thurston map is realized?

Obstructions

Let f be a Thurston map with a postsingular set P_f .

Definition.

Simple closed essential curve $\gamma \subset S^2 \backslash P_f$ is called a Levy cycle for f if for some $n \geqslant 1$ there exists a simple closed curve $\gamma' \subset f^{-n}(\gamma)$ such that

Obstructions

Let f be a Thurston map with a postsingular set P_f .

Definition.

Simple closed essential curve $\gamma \subset S^2 \backslash P_f$ is called a Levy cycle for f if for some $n \geqslant 1$ there exists a simple closed curve $\gamma' \subset f^{-n}(\gamma)$ such that

- ullet γ and γ' are homotopic in $S^2 \backslash P_f$,
- $\deg(f^{\circ n}|\gamma': \gamma' \to \gamma) = 1.$

Obstructions

Let f be a Thurston map with a postsingular set P_f .

Definition.

Simple closed essential curve $\gamma \subset S^2 \backslash P_f$ is called a Levy cycle for f if for some $n \geqslant 1$ there exists a simple closed curve $\gamma' \subset f^{-n}(\gamma)$ such that

- ullet γ and γ' are homotopic in $S^2 \backslash P_f$,
- $\deg(f^{\circ n}|\gamma': \gamma' \to \gamma) = 1.$

Proposition.

Suppose that a Thurston map f has a Levy cycle. Then f is obstructed.

Example of a Levy cycle

The answer is known in the following cases:

• f is defined on whole S^2 (W.Thurston'80s; Douady-Hubbard'93);

The answer is known in the following cases:

- f is defined on whole S^2 (W.Thurston'80s; Douady-Hubbard'93);
- $f: \mathbb{R}^2 \to \mathbb{R}^2$ is transcendental and has the only finite singular value (Hubbard-Schleicher-Shishikura'09);

The answer is known in the following cases:

- f is defined on whole S^2 (W.Thurston'80s; Douady-Hubbard'93);
- $f: \mathbb{R}^2 \to \mathbb{R}^2$ is transcendental and has the only finite singular value (Hubbard-Schleicher-Shishikura'09);

Partial progress for structurally finite maps entire Thurston maps (S.Shemyakov'22).

The answer is known in the following cases:

- f is defined on whole S^2 (W.Thurston'80s; Douady-Hubbard'93);
- $f: \mathbb{R}^2 \to \mathbb{R}^2$ is transcendental and has the only finite singular value (Hubbard-Schleicher-Shishikura'09);

Partial progress for structurally finite maps entire Thurston maps (S.Shemyakov'22).

In particular, if $f: \mathbb{R}^2 \to \mathbb{R}^2$ has either finite topological degree or the only finite singular value, then it is realized if and only if f has no Levy cycles.

Main Theorem A

Theorem (NP'24).

Let f be a Thurston map such that $|P_f| = \underline{4}$. Suppose that there exists a set $A \subset P_f$ so that |A| = 3, $S_f \subset A$, and $|\overline{f^{-1}(A)} \cap P_f| = 3$. Then the map f is realized if and only if it has no Levy fixed curves.

Main Theorem A

Theorem (NP'24).

Let f be a Thurston map such that $|P_f|=4$. Suppose that there exists a set $A\subset P_f$ so that |A|=3, $S_f\subset A$, and $|\overline{f^{-1}(A)}\cap P_f|=3$. Then the map f is realized if and only if it has no Levy fixed curves.

Sketch of the proof

To every Thurston map f we can associate pullback map $\sigma_f : \operatorname{Teich}(S^2, P_f) \circlearrowleft$, where $\operatorname{Teich}(S^2, P_f)$ is Teichmüller space of the topological sphere S^2 with the marked set P_f .

Sketch of the proof

To every Thurston map f we can associate pullback map $\sigma_f : \operatorname{Teich}(S^2, P_f) \circlearrowleft$, where $\operatorname{Teich}(S^2, P_f)$ is Teichmüller space of the topological sphere S^2 with the marked set P_f .

Proposition.

Thurston map f is realized if and only if the pullback map σ_f has a fixed point.

Sketch of the proof

To every Thurston map f we can associate pullback map $\sigma_f : \operatorname{Teich}(S^2, P_f) \circlearrowleft$, where $\operatorname{Teich}(S^2, P_f)$ is Teichmüller space of the topological sphere S^2 with the marked set P_f .

Proposition.

Thurston map f is realized if and only if the pullback map σ_f has a fixed point.

Proposition.

 $\operatorname{Teich}(S^2, P_f)$ is a $(|P_f| - 3)$ -complex dimensional manifold and σ_f is a holomorphic map.

Four postsingular points

If $|P_f| = 4$, then $\operatorname{Teich}(S^2, P_f) \sim \mathbb{D}$.

Four postsingular points

If $|P_f| = 4$, then $\operatorname{Teich}(S^2, P_f) \sim \mathbb{D}$.

The map σ_f : Teich (S^2, P_f) \circlearrowleft can be viewed as a holomorphic map on the unit disk.

Four postsingular points

If $|P_f| = 4$, then $\operatorname{Teich}(S^2, P_f) \sim \mathbb{D}$.

The map σ_f : Teich (S^2, P_f) \circlearrowleft can be viewed as a holomorphic map on the unit disk.

Theorem (Denjoy-Wolff theorem).

Let $g:\mathbb{D}\to\mathbb{D}$ be a holomorphic map that is neither an elliptic transformation nor identity. The sequence $(g^{\circ n})$ converges uniformly on compacts to a Denjoy-Wolff point $z\in\overline{\mathbb{D}}$.

Marked Thurston maps

Let f be a Thurston map and A be a finite set such that $P_f \subset A$, and for each $a \in A$ either $f(a) \in A$ or a is an essential singularity of f. Then the pair (f,A) is called marked Thurston map and it is denote by $f: (S^2,A) \leq ...$

Marked Thurston maps

Let f be a Thurston map and A be a finite set such that $P_f \subset A$, and for each $a \in A$ either $f(a) \in A$ or a is an essential singularity of f. Then the pair (f,A) is called marked Thurston map and it is denote by $f: (S^2,A) \leq ...$

Example.

Suppose that $f: S^2 \to S^2$ is a realized Thurston map having $\deg(f) + 2$ fixed points. Then the marked Thurston map $f: (S^2, P_f \cup \operatorname{Fix}(f)) \leq$ is obstructed.

Main Theorem B

Theorem (NP'24).

Let $f:(S^2,A) \Leftrightarrow$ be a marked Thurston map such that the Thurston map f is realized. Then the map $f:(S^2,A) \Leftrightarrow$ is realized if and only if it has no Levy cycles.

Main Theorem B

Theorem (NP'24).

Let $f: (S^2, A) \le$ be a marked Thurston map such that the Thurston map f is realized. Then the map $f: (S^2, A) \le$ is realized if and only if it has no Levy cycles.

Idea of proof: If $A = P_f \cup \{a\}$ and f(a) = a, then the map $\sigma_{f,A} \colon \operatorname{Teich}(S^2,A) \circlearrowleft$ has a forward invariant subset U that is a properly and holomorphically embedded unit disk.

Thank you for your attention!