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Fundamental physics
o understood to mean particle physics and astronomy

o big questions about the very small: elementary particles, quarks and gluons
and the very large: galaxies, black holes, gravitational waves, the universe

o no immediate application in society, but long-term interest (and impact!) 
in understanding nature 
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High-energy physics (HEP)

o past seven years or so have seen a rapid rise of applications of ML

o of course, ML has been around for quite some time, especially in experimental 
particle physics

o nevertheless, there is 
an exponential increase 
in activity

“find title learning” on the iNSPIRE-HEP data base
dedicated HEP database, collecting all papers in the field 3



High-energy physics (HEP)

find title learning 
on the iNSPIRE-HEP 
data base

exponential increase
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o 60% particle physics/astronomy
o 25% computer science/maths
o 15% health 

cdt-aimlac.org/ 

https://cdt-aimlac.org/


AIMLAC: some project titles

o coevolution of galaxies and supermassive black holes in the Euclid era
o searching for New Physics with the CMS experiment at the Large Hadron Collider
o a cold and dusty universe: understanding the cosmic dust and cold gas in nearby galaxies 
o tests of the dark sector with gravitational waves 
o exploiting GAIA data and understanding the galaxies’ past histories with ML
o simulation-based inference of gravitational waves signals from black holes and neutron stars
o searches for Beyond-Standard-Model signatures with jets + missing energy
o monsters in the dark: gas, dust and star formation around supermassive black holes 
o AI techniques for extracting source information from Square Kilometre Array (SKA) datasets
o deep learning for real-time gravitational wave detection
o …
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ML in fundamental physics

o lots of applications of ML in particle physics, astronomy, gravitational waves, …

AI/ML for physics

o considerable overlap between concepts in theoretical physics and in ML

o interesting cross-talk to explore algorithms and improve understanding

physics for AI/ML

7



My interests and background

theoretical physics à particle physics à quantum field theory à lattice field theory
o understand the strong nuclear force (quarks & gluons) from first principles
o systems of many fluctuating degrees of freedom (quantum fields) on a spacetime lattice
o interactions via fluctuating links, determined by physical theory 

ML models/neural networks
o train ML model to complete some task
o many degrees of freedom (“neurons”) on a multi-layered network
o nodes interact via weights, determined by loss function
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Conceptual and practical questions

can experience in quantum field theory help in understanding ML and vice versa?

o quantum field-theoretic machine learning
Dimitrios Bachtis, GA, Biagio Lucini, Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

o scalar field restricted Boltzmann machines as an ultraviolet regulator
Chanju Park, Biagio Lucini, GA, 2309.15002 [hep-lat]

o stochastic quantisation and diffusion models Lingxiao Wang, GA, Kai Zhou, 2309.17082 [hep-lat]

NeurIPS 2023 2311.03578 [hep-lat]
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https://arxiv.org/abs/2102.09449
https://arxiv.org/abs/2309.15002
https://arxiv.org/abs/2309.17082
https://arxiv.org/abs/2311.03578


lattice field theory and Markov random fields

derive machine learning algorithms from discretized Euclidean field theories

scalar lattice field theory Markov random field
(Hammersley-Clifford theorem) 

machine learning algorithms

D. Bachtis, GA and B. Lucini, Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]
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Probability distribution p 𝜑
probability distribution p 𝜑 defined as product of 
nonnegative functions over maximal cliques in graph 
(or lattice):

then p 𝜑 satisfies local Markov 
property

and set of random variables 𝜑
define a Markov random field

p 𝜑 defines lattice field theory
11



Restricted Boltzmann Machine: generative network

o energy-based method

o probability distribution

o binary or continuous d.o.f.
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o treat RBM as a lattice field theory with action

o only quadratic terms: learn weight matrix 𝑤!" and bias 𝜂"
o induced distribution on visible layer

o kinetic (all-to-all) term and source

Scalar field RBM

N

i= i= i=21

a= a= a=1 2 h

Nv
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Chanju Park, Biagio Lucini, GA, 2309.15002 [hep-lat]

https://arxiv.org/abs/2309.15002


o kinetic (all-to-all) term and source

o kinetic term and source should match target distribution/data

o for instance: target is scalar field theory with 𝐾# ≈ 𝑝$ +𝑚$

v dependence on 𝑁%: what if 𝑁% < 𝑁&? role of hyperparameter 𝜇$?

v both 𝑁% and 𝜇$ act as ultraviolet regulators

o regulate the spectrum of the quadratic operator 𝐾# of the target distribution/data

Gaussian scalar field RBM
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• example: scalar LFT
with 𝑁! = 10 nodes

• exact spectrum:
𝜅 ~ 𝑝" +𝑚"

• reproduced by RBM (𝜆) from 
smallest eigenvalue upwards

• higher modes are moved to 
cut-off scale (𝜇")

What if 𝑁! < 𝑁" ? 
train RBM with persistent 
contrastive divergence
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• example: scalar LFT
with 𝑁! = 10 nodes

• exact spectrum:
𝜅 ~ 𝑝" +𝑚"

• reproduced by RBM (𝜆) from 
smallest eigenvalue upwards

• higher modes are suppressed 
at cut-off scale (𝜇")

What if RBM parameter 𝜇# < 𝜆$%& ?
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o relevant for “real” data sets? MNIST

o compute spectrum of two-point 

correlator  𝐾!'() =< 𝜙!𝜙' >*"+"

o inverse spectrum 1/𝜅

o infrared safe

o ultraviolet divergent

RBM as ultraviolet regulator
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o 𝑁& = 𝑁% = 784

o fixed RBM parameter
𝜇$ = 100

o spectrum regulated

o infrared modes learned
correctly

MNIST with fixed RBM mass
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what is the effect of including 
incomplete spectrum?

removal of ultraviolet modes 
affects generative power

language of quantum fields 
helps in understanding 
(at least for me!)

MNIST with 𝑁! ≤ 𝑁"
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Diffusion models: generative ML

20https://encord.com/blog/diffusion-models/ 

https://encord.com/blog/diffusion-models/


Diffusion models: generative ML 

o solve stochastic process with a particular drift/force/score
o drift is learnt during forward diffusion process, starting from data
o new configurations are generated via backward process using learnt drift  

!! !" !!

"! "" "!
!"
!# = f ", # + ( # ) !"

!* = [f ", * − ( * !∇"log 1#(")] + ( * )̅
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Stochastic quantisation

o ideas well-known in quantum field theory: stochastic quantisation (Parisi & Wu 1980)

o path integral quantisation via a stochastic process in fictitious time

o equilibrium solution (𝜏 → ∞): distribution  𝑝 𝜙 ~ 𝑒(,!

o convergence guaranteed for real actions due to properties of Fokker-Planck equation
o create samples from Euclidean path integral
o applied to non-abelian gauge theories and QCD in 1980s, but superseded by other

methods such as Hybrid Monte Carlo (HMC) [stepsize dependence, efficiency]
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Stochastic quantisation and diffusion models

o diffusion models as an alternative approach to stochastic quantisation

configurations

theory: 𝑝 𝜙 	~	𝑒(,!  

e.g. HMC

configurations
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations
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Diffusion model for 2d 𝜙' scalar theory

o 32$ lattice, training data set generated using Hybrid Monte Carlo (HMC)
o variance expanding DM trained using U-Net architecture

generating configurations:
o broken phase
o “denoising” (backward process) 
o large-scale clusters emerge, as expected

use diffusion models to generate 
configurations in field theory

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1

Lingxiao Wang, GA, Kai Zhou, 2309.17082 [hep-lat]

https://arxiv.org/abs/2309.17082


Summary: ML in fundamental physics

o lots of applications of ML in particle physics, astronomy, gravitational waves, …

AI/ML for physics

o considerable overlap between concepts in theoretical physics and in ML

o interesting cross-talk to explore algorithms and improve understanding

physics for AI/ML
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