ML in fundamental physics

Gert Aarts

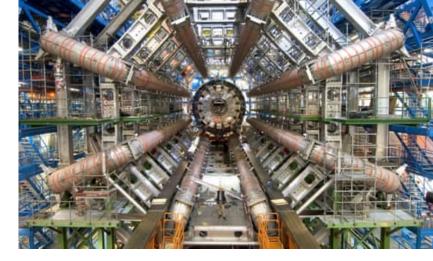
Distributed Algorithms CDT Liverpool, Nov 29, 2023

Fundamental physics

understood to mean particle physics and astronomy

- big questions about the very small: elementary particles, quarks and gluons and the very large: galaxies, black holes, gravitational waves, the universe
- no immediate application in society, but long-term interest (and impact!) in understanding nature

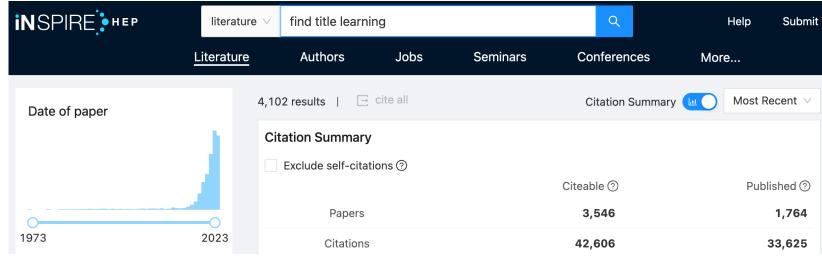




High-energy physics (HEP)

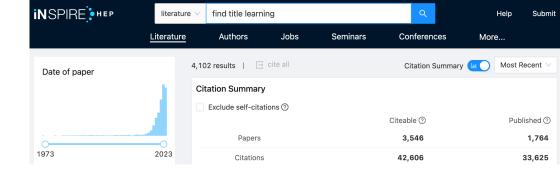
• past seven years or so have seen a rapid rise of applications of ML

- of course, ML has been around for quite some time, especially in experimental particle physics
- nevertheless, there is an exponential increase in activity

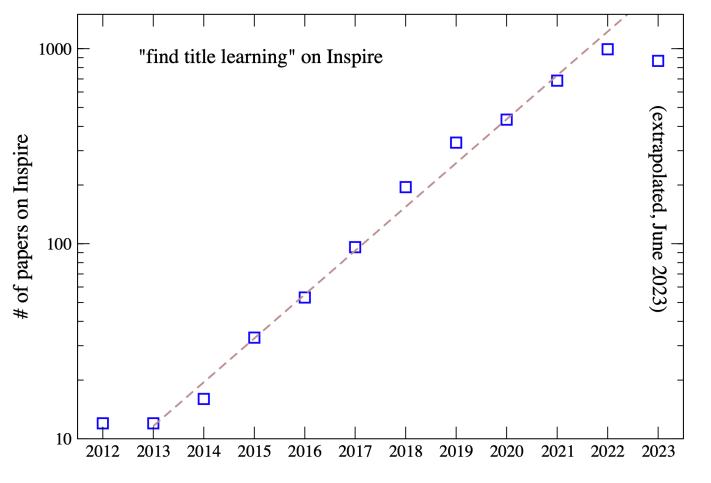


3

"find title learning" on the iNSPIRE-HEP data base dedicated HEP database, collecting all papers in the field



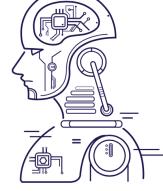
High-energy physics (HEP)



find title **learning** on the iNSPIRE-HEP data base

exponential increase

cdt-aimlac.org/



60% particle physics/astronomy
25% computer science/maths
15% health

Swansea University Prifysgol Abertawe

AIMLAC: some project titles

- o coevolution of galaxies and supermassive black holes in the Euclid era
- o searching for New Physics with the CMS experiment at the Large Hadron Collider
- o a cold and dusty universe: understanding the cosmic dust and cold gas in nearby galaxies
- tests of the dark sector with gravitational waves
- exploiting GAIA data and understanding the galaxies' past histories with ML
- o simulation-based inference of gravitational waves signals from black holes and neutron stars
- searches for Beyond-Standard-Model signatures with jets + missing energy
- o monsters in the dark: gas, dust and star formation around supermassive black holes
- Al techniques for extracting source information from Square Kilometre Array (SKA) datasets
- deep learning for real-time gravitational wave detection

ML in fundamental physics

○ lots of applications of ML in particle physics, astronomy, gravitational waves, ...

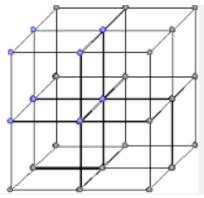
AI/ML for physics

o considerable overlap between concepts in theoretical physics and in ML

interesting cross-talk to explore algorithms and improve understanding

physics for AI/ML

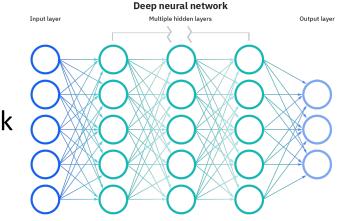
My interests and background



theoretical physics \rightarrow particle physics \rightarrow quantum field theory \rightarrow lattice field theory

- o understand the strong nuclear force (quarks & gluons) from first principles
- o systems of many fluctuating degrees of freedom (quantum fields) on a spacetime lattice
- interactions via fluctuating links, determined by physical theory

- train ML model to complete some task
- many degrees of freedom ("neurons") on a multi-layered network
- nodes interact via weights, determined by loss function



Conceptual and practical questions

can experience in quantum field theory help in understanding ML and vice versa?

quantum field-theoretic machine learning

Dimitrios Bachtis, GA, Biagio Lucini, Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

o scalar field restricted Boltzmann machines as an ultraviolet regulator

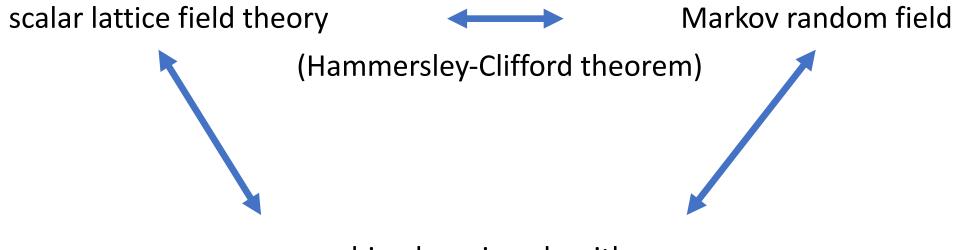
Chanju Park, Biagio Lucini, GA, 2309.15002 [hep-lat]

stochastic quantisation and diffusion models

Lingxiao Wang, GA, Kai Zhou, <u>2309.17082</u> [hep-lat] NeurIPS 2023 <u>2311.03578</u> [hep-lat]

lattice field theory and Markov random fields

derive machine learning algorithms from discretized Euclidean field theories



machine learning algorithms

D. Bachtis, GA and B. Lucini, Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

Probability distribution $p(\phi)$

probability distribution $p(\varphi)$ defined as product of nonnegative functions over maximal cliques in graph (or lattice):

then $p(\varphi)$ satisfies local Markov property

and set of random variables φ define a Markov random field

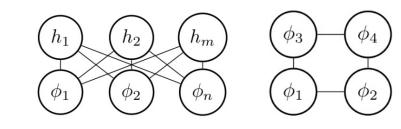
 $p(\varphi)$ defines lattice field theory

 $p(\phi) = \frac{1}{Z} \prod_{c \in C} \psi_c(\phi)$

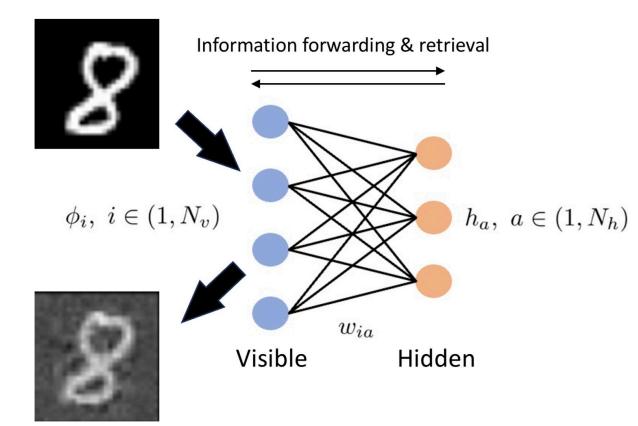
Theorem 1 (Hammersley-Clifford.) A strictly positive distribution p satisfies the local Markov property of an undirected graph \mathcal{G} , if and only if p can be represented as a product of nonnegative potential functions ψ_c over \mathcal{G} , one per maximal clique $c \in C$, i.e.,

$$p(\phi) = \frac{1}{Z} \prod_{c \in C} \psi_c(\phi), \qquad (2)$$

where $Z = \int_{\phi} \prod_{c \in C} \psi_c(\phi) d\phi$ is the partition function and ϕ are all possible states of the system. 11



Restricted Boltzmann Machine: generative network



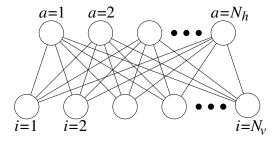
energy-based method

probability distribution

• binary or continuous d.o.f.

$$p(\phi,h)=rac{1}{Z}e^{-S(\phi,h)}$$

$$Z = \int D\phi Dh \, e^{-S(\phi,h)} \, \, _{\rm 12}$$



Scalar field RBM

• treat RBM as a lattice field theory with action

$$S(\phi, h) = \sum_{i} \frac{1}{2} \mu_{i}^{2} \phi_{i}^{2} + \sum_{a} \frac{1}{2\sigma^{2}} (h_{a} - \eta_{a})^{2} - \sum_{i,a} \phi_{i} w_{ia} h_{a}$$

o only quadratic terms: learn weight matrix w_{ia} and bias η_a

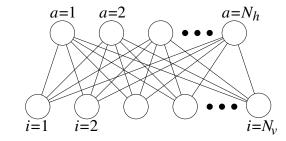
induced distribution on visible layer

$$p(\phi) = \int Dh \, p(\phi, h) = \frac{1}{Z} \exp\left(-\frac{1}{2} \sum_{i,j} \phi_i K_{ij} \phi_j + \sum_i J_i \phi_i\right)$$

• kinetic (all-to-all) term
$$K_{ij} = \mu_i^2 \delta_{ij} - \sigma^2 \sum_a w_{ia} w_{aj}^T$$
 and source $J_i = \sum_a w_{ia} \eta_a$

Chanju Park, Biagio Lucini, GA, 2309.15002 [hep-lat]

Gaussian scalar field RBM



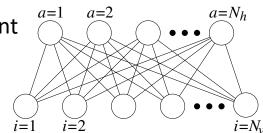
$$\circ$$
 kinetic (all-to-all) term $K_{ij}=\mu_i^2\delta_{ij}-\sigma^2\sum_a w_{ia}w_{aj}^T$ and source $J_i=\sum_a w_{ia}\eta_a$

- kinetic term and source should match target distribution/data
- for instance: target is scalar field theory with $K^{\phi} \approx p^2 + m^2$
- ♦ dependence on N_h : what if $N_h < N_v$? role of hyperparameter μ^2 ?
- both N_h and μ^2 act as **ultraviolet regulators**

• regulate the spectrum of the quadratic operator K^{ϕ} of the target distribution/data

What if $N_h < N_v$?

train RBM with persistent contrastive divergence



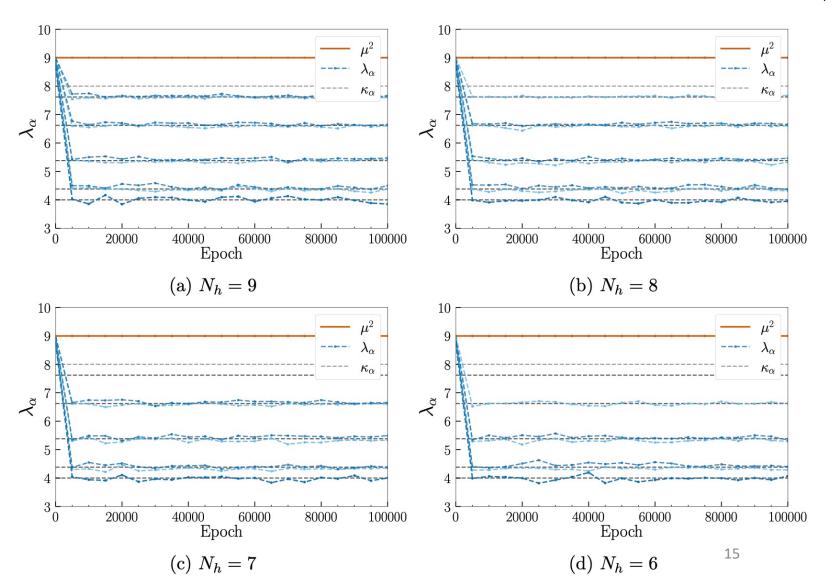
• example: scalar LFT with $N_v = 10$ nodes

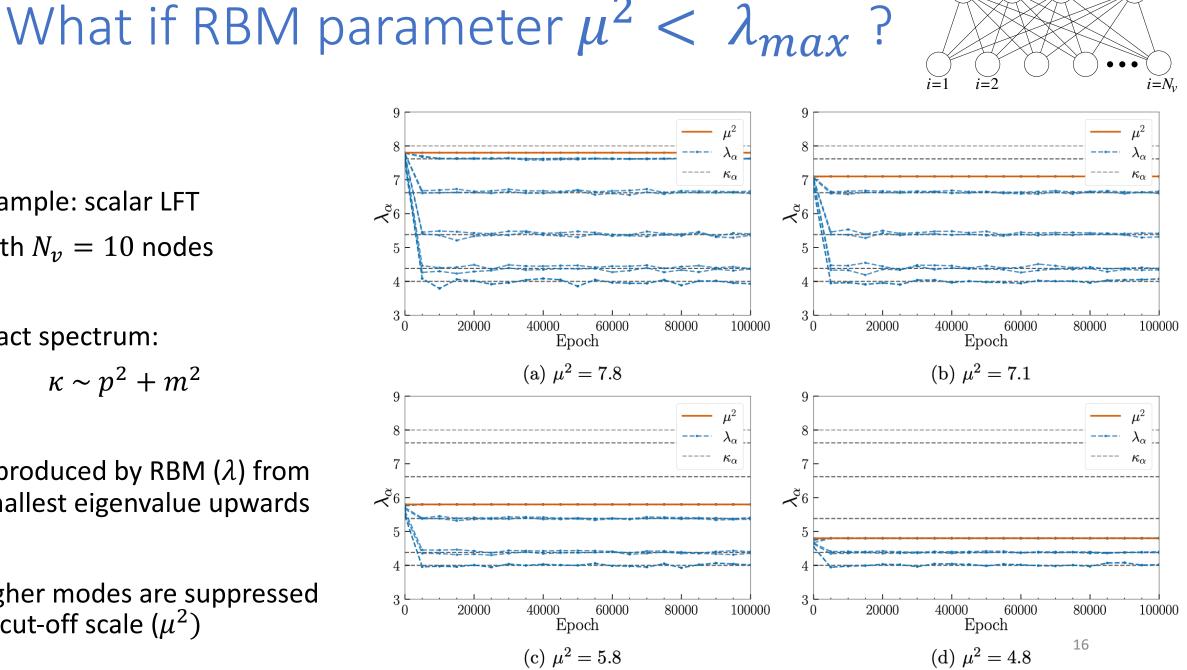
• exact spectrum:

 $\kappa \sim p^2 + m^2$

 reproduced by RBM (λ) from smallest eigenvalue upwards

• higher modes are moved to cut-off scale (μ^2)





 $a=N_h$

a=1

a=2

- example: scalar LFT with $N_{\nu} = 10$ nodes
- exact spectrum:

 $\kappa \sim p^2 + m^2$

• reproduced by RBM (λ) from smallest eigenvalue upwards

 higher modes are suppressed at cut-off scale (μ^2)

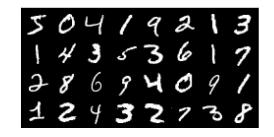
RBM as ultraviolet regulator

- relevant for "real" data sets? MNIST
- compute spectrum of two-point correlator $K_{ij}^{-1} = \langle \phi_i \phi_j \rangle_{data}$
- inverse spectrum $1/\kappa$
- infrared safe

C	infrared	 6.572
6		 4.806
		 4.178
		 3.650
$\overset{v_4}{\varkappa}$		 3.297
\sim		 2.920 -
		 2.216
2		 1.953
		 1.871
		 1.596
ſ	ultraviolet	1.428

ultraviolet divergent

784 eigenvalues



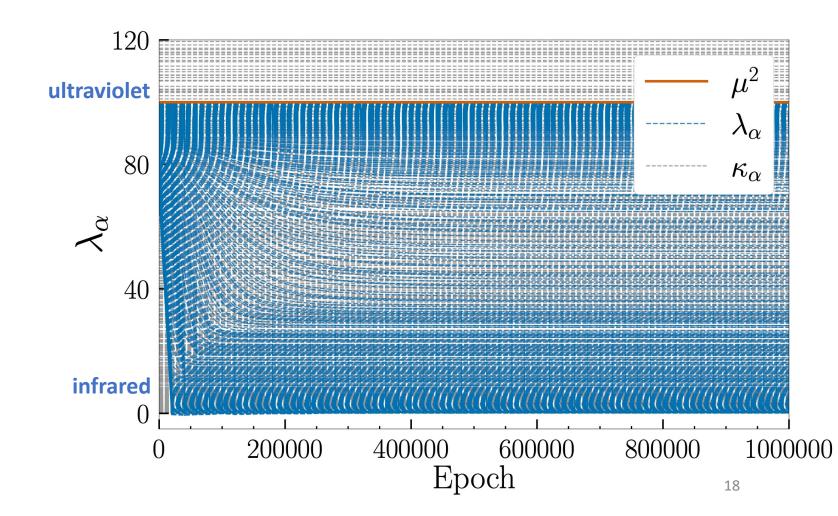
MNIST with fixed RBM mass

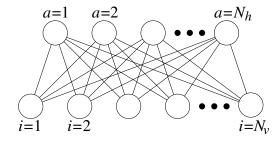
 $\circ N_{v} = N_{h} = 784$

fixed RBM parameter

 $\mu^2 = 100$

- spectrum regulated
- infrared modes learned correctly





MNIST with $N_h \leq N_v$

what is the effect of including incomplete spectrum?

removal of ultraviolet modes affects generative power

language of quantum fields
helps in understanding
(at least for me!)

(a) $N_h = 784$

(d) $N_h = 36$

1

5	0	Ч	1	9	2	١	3
1	4	3	ک	3	6	1	7
Ъ	8	6	9	T	0	9	1
ュ	З	4	3	2	7	N	8

(b) $N_h = 225$

(c) $N_h = 64$

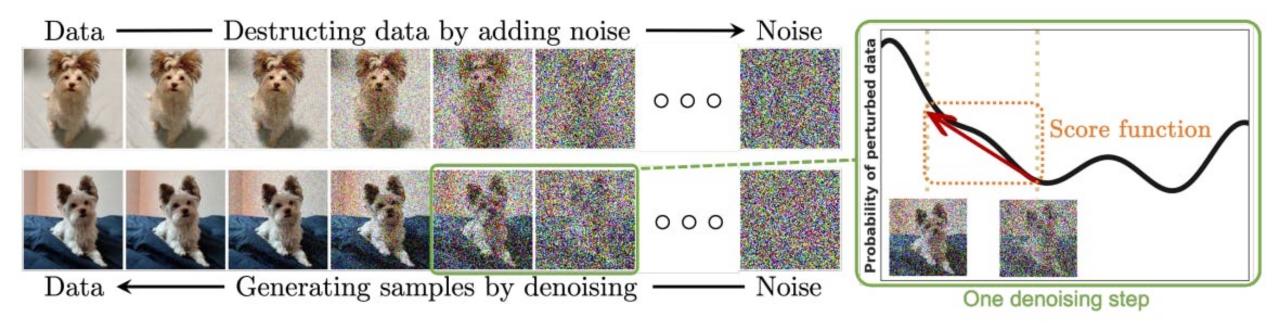
(e) $N_h = 16$

8	0	9	1	9	9	3	8
1	Ø	(10)	5	3	0	1	9
9	8	69	9	9	0	9	3
8	3	9	3	9	9	60	\$

(f) $N_h = 4$

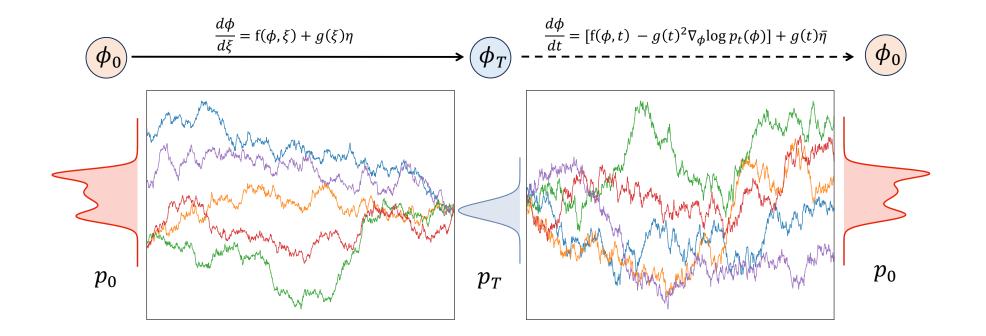
19

Diffusion models: generative ML



Diffusion models: generative ML

- solve stochastic process with a particular drift/force/score
- o drift is learnt during forward diffusion process, starting from data
- new configurations are generated via backward process using learnt drift



Stochastic quantisation

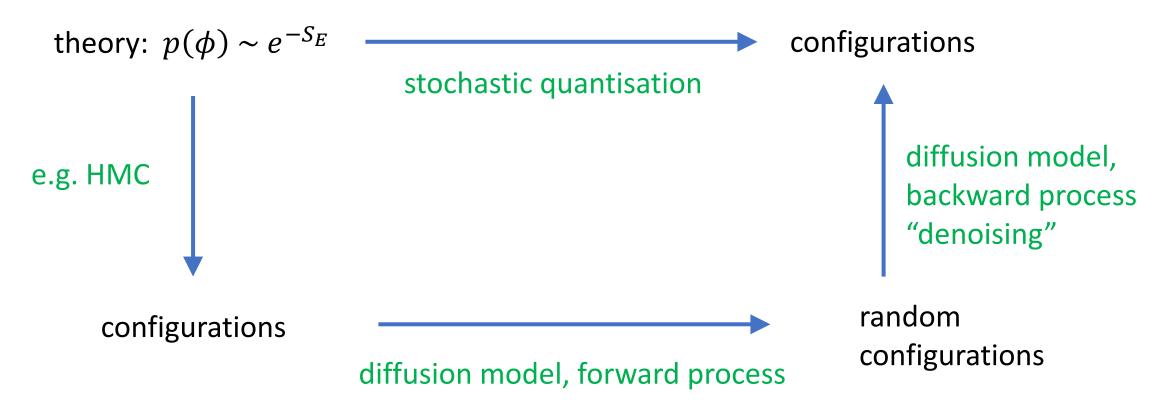
- o ideas well-known in quantum field theory: stochastic quantisation (Parisi & Wu 1980)
- path integral quantisation via a stochastic process in fictitious time

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\frac{\delta S_E[\phi]}{\delta \phi(x,\tau)} + \eta(x,\tau) \qquad \qquad \langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\alpha\delta(x-x')\delta(\tau-\tau')$$

- equilibrium solution $(\tau \to \infty)$: distribution $p(\phi) \sim e^{-S_E}$
- convergence guaranteed for real actions due to properties of Fokker-Planck equation
- create samples from Euclidean path integral
- applied to non-abelian gauge theories and QCD in 1980s, but superseded by other methods such as Hybrid Monte Carlo (HMC) [stepsize dependence, efficiency]

Stochastic quantisation and diffusion models

o diffusion models as an alternative approach to stochastic quantisation



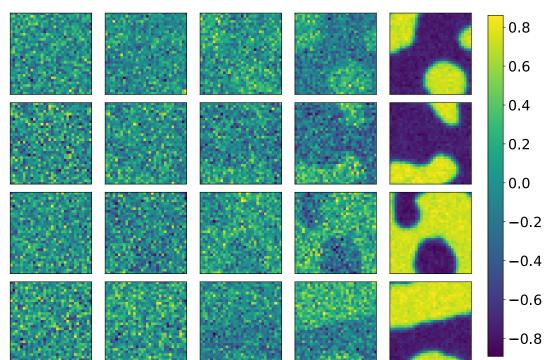
Diffusion model for 2d ϕ^4 scalar theory

- 32² lattice, training data set generated using Hybrid Monte Carlo (HMC)
- variance expanding DM trained using U-Net architecture

generating configurations:

- broken phase
- "denoising" (backward process)
- large-scale clusters emerge, as expected

use diffusion models to generate configurations in field theory



 $\tau = 0$ $\tau = 0.25$ $\tau = 0.5$ $\tau = 0.75$ $\tau = 1$

Summary: ML in fundamental physics

○ lots of applications of ML in particle physics, astronomy, gravitational waves, ...

AI/ML for physics

o considerable overlap between concepts in theoretical physics and in ML

interesting cross-talk to explore algorithms and improve understanding

physics for AI/ML