Course details
- A level requirements: AAB
- UCAS code: B213
- Study mode: Full-time
- Length: 4 years
Return to top
Pharmacology is an exciting branch of experimental science in which you'll study how chemical substances interact with our bodies.
The Master of Pharmacology (MBiol) is a four-year programme, in which students first follow the three-year BSc in Pharmacology and then continue into a fourth year, subject to performance.
In the first three years, you’ll study a broad range of modules including drug discovery and development, the cellular basis of health and disease, translational pharmacology, and advanced pharmacology and therapeutics with the opportunity to specialise and carry out your own research project.
The fourth (Master’s) year aims at developing enhanced research and personal skills for students seeking a high-level career in research (e. g. studying for a PhD or working in industry) or those seeking to enhance their qualification. Students will join a research team to undertake a significant research project. Students can also apply for a six-week summer research internship in the UK or overseas or apply to spend time working in industry or in other enterprises in the final year.
We’re proud to announce we’ve been awarded a Gold rating for educational excellence.
Discover what you'll learn, what you'll study, and how you'll be taught and assessed.
In this first year, you’ll gain an understanding of core concepts of biology as well as the fundamental principles of immunity, infection, and therapy. You will also study how organisms develop and function and learn about ecology and the global environment. You will develop practical skills and participate in field studies, and you will discover how to utilise quantitative skills and study techniques.
COMPULSORY MODULES
In your second year you’ll expand your range of knowledge building those essential research skills, experimental design and analysis together with professional skills preparing you for a career within or outside the area of pharmacology. You will study drug discovery and development, and explore how pharmacological principles underpin the creation of medicines used to treat a wide range of diseases.
COMPULSORY MODULES
Year three will provide an unparalleled opportunity for you to learn at the cutting edge of pharmacological research and be taught by world-leading academics in the subjects of drug safety, personalised medicine and advanced therapeutics. You will have the opportunity to take a physical or virtual placement. Central to this year is the research project where you will plan and execute your own research, analyse and critically evaluate data and communicate your research findings in your chosen specialisation.
COMPULSORY MODULES
The fourth year of study offers great flexibility – students may spend it entirely on campus at Liverpool, but more commonly they take up opportunities to broaden their experiences, for example a six-week research internship in the UK (in hospitals, industry or research institutes) or abroad (in our partner universities in Thailand or China). Others may elect to spend the entire fourth year on placement, in similar host institutions. Students will take core modules in research methods and statistics or informatics, together with a 60-credit research project. Students may replace the internship with other modules that cover advanced topics of global importance.
The School offers a range of projects that allow students to conduct research individually at Masters level under the supervision of a member of academic staff. Topics are closely allied to the research field of the supervisor, and the basis of the project may involve data collection by observation and experimentation in situ (field projects), in vitro (laboratory projects), or in silico (bioinformatics). However, all types of projects have the same learning outcomes (that is, all students should acquire the same kinds of skills; see below), achieved by in-depth study. The nature of the lab or field-based projects might be adapted if the field trips or labs access are limited due to unavoidable circumstances.
Data skills are essential for a career in modern biology. Biological studies increasingly involve the generation of large or complex sets of data, and the ability to analyse data is a core component of a successful biologist’s skill set. Digital fluency is also required more widely outside biological research and a grounding in data analysis is in demand by a broad range of employers. Here you will learn the ability to visualise data, critically test hypotheses, and to interpret and present results.
The learning and teaching materials are delivered as an online set of resources (available through Canvas) coupled with computer-based practical workshops. The module will also introduce students to the powerful open access statistical software package, R.
The module will be assessed by a written data analysis report and an open-book exam
For any students studying off-campus – due to a placement in industry or studying at an overseas University – on-line drop-in sessions will be provided instead of the practical workshops.
This module will provide students with an understanding of the processes and methods required for the successful planning and delivery of research projects. It will also Introduce students to the latest, cutting edge technologies that will support their research field of interest. It will develop in students the transferrable communication skills that will enable them to disseminate their findings to both scientific and general audiences.
The internship is undertaken as placement in the summer period between years 3 and 4 of the MBiolSci programme. The student will work with a research group working on a specific project or a set of related projects. A senior member of the project team will provide day today supervision. The purpose of the internship is for the student to understand the objectives of the research (in of light of the research strategy of the group or institute), how the research is conducted and managed, and how the data are recorded and analysed. The student will also learn how project design is influenced by factors such as, the business strategy of the company, the research priority areas of the country, and ultimately the funding opportunities available to support the research.
This module is aimed at postgraduate students in the Biosciences, wishing to learn about methods for use in data-intensive research. The module provides a broad introduction to the use of Python coding for performing basic tasks in the biological sciences. The student will get practical experience in writing their own Python scripts for basic bioinformatics tasks, such as manipulating DNA, RNA and protein sequences, file input/output and working with other programs, such as BLAST. There is also an introduction to data visualisation using Python, and simple techniques used in data science.
Around 10 hours of lectures will be provided on core topics, with a strong emphasis on practical activity in workshops (totalling around 40 hours), allowing students to gain confidence in writing scripts for their own tasks. The module will be assessed by two short coding assignments, one team working coding assignment building a bioinformatics pipeline, and a data science mini-project.
Modern biotechnology and bioimaging applies novel tools and approaches to address today’s global challenges.
You will learn a variety of methods in mammalian cell biotechnology as well as imaging technologies that range from the microscopic scale to cellular and organ imaging in vivo. You will develop knowledge of a diversity of cell analysis techniques. Furthermore, the use of reporter genes for various types of imaging will be explained, including imaging technologies for cell analysis on the microscopic level as well as for cell imaging and functional analysis in animal models of disease.
The lectures will convey basic knowledge and include examples of applications from actual research publications, or the lecturer’s own research work, in equal measure. The students will have learning tutorials on critical appraisal of literature. There will also be a practical workshop on contemporary microscopy.
The module will be taught through a combination of lectures, workshops and practical exercises. There are two written assessments in this module.
This is a key module for students on the MSc Infection and Immunity Programme and might also be taken by other MSc, MBioSci and MRes students whose interests include infection and immunology. The module is topical in light of the pandemic and will address areas of research-connected infection biology teaching across areas of broad relevance to infectious disease, as well as to coronavirus. The module includes research connected lectures, workshops and structured discussions on selected texts as student-led topics. The content will focus on areas of infectious disease that support the programme and are relevant in that: (i) they are current/topical or (ii) they address fundamental questions of general importance. In addition, students will also be supported with key research and ideas in emerging infections and pandemics, showing how interconnected interconnected nature of health and disease through integrating aspects of biology and society. The module assessments are aimed at: 1) writing a report on a selected emerging pathogen that communicates the multifactorial considerations for researchers and society 2) presentation of a key factor that contributes to or affects disease emergence and the response by society or an agency. The factor focused on will be selected from workshops and student-led discussions
The module will address three main topics: hallmarks of cancer, cancer diagnosis and biomarkers, and cancer therapies & current challenges. These topics will be taught using various cancer models that have been selected based on the expertise at the University of Liverpool and to illustrate research, diagnostic and therapeutic problems.
This module will be taught by both scientists and clinicians who are experts in cancer research. The module will be taught through a combination of lectures, seminars, case-based learning tutorials and workshops. The lectures will convey basic knowledge and include examples of applications from actual research publications and the lecturer’s own research work.
The students will take part in case-based learning tutorials on critical appraisal of scientific seminars provided by cancer researchers. Workshops will cover literature search, referencing, and preparation of oral scientific presentations in preparation for the final assignment which is a conference style talk. A practical workshop will also cover tumour pathology and will train students in the identification and interpretation of tumour biopsies.
The module will be assessed via two assessments. The first assessment consists of a seminar report, based on a pre-recorded seminar provided by a cancer researcher. The final assessment will be an oral presentation, in which students will be required to give a conference-style lecture on an emerging cancer research topic related to one of the lectures and provide an abstract of their presentation.
Clinical trials are the key final step to translate medical research into the benefit of patients. The Liverpool Clinical Trials Unit is one of the largest in the UK, running a wide variety of surgical and oncology studies, that range from phase I studies to large, practice-changing phase III studies, as well as more novel trial designs. Since new therapies have become available in the treatment of cancer, the methods used in clinical trials have also evolved. The module in Cancer Clinical Trials is aimed at developing the knowledge and understanding of decisions affecting the design, delivery and assessment of clinical trials. This module will be taught by clinicians, researchers, statisticians and trial methodologists at the Liverpool Trials Unit, and cover fundamentals of clinical trials and designs, as well as the challenges that arise at each of these strategies. The module in Cancer Clinical Trials is ideal for current in-service health professionals looking to broaden their role in the design, management, analysis and reporting of clinical trials. It is also suited to those wishing to gain an understanding of clinical trials. The module will be taught through a combination of lectures, case-based learning tutorials and workshops, and assessed via a poster presentation and a written assessment, involving the design of a clinical trial.
This is a key module for students on the MSc Infection and Immunity Programme and might also be taken by other MSc, MBioSci and MRes students whose interests include infection and immunology. The module is topical in light of the pandemic and will address areas of research-connected immunology teaching across areas of broad relevance to infectious disease, as well as to coronavirus. The module includes research connected lectures, workshops and structured discussions on selected texts as student-led seminars. The content will focus on areas of immunology that support the programme and are relevant in that: (i) they are current/topical or (ii) they address fundamental questions of general importance. In addition, students will also be supported with key research and ideas in immune mechanisms and host defence, showing how research fields progress and our understanding of defence mechanisms develop. The module assessments are aimed at: 1) using graphics to show illustratively specific and complex immunological host-pathogen interactions and will aid skills in image design; and 2) poster presentation to demonstrate immunological interactions based on the student-led workshops on host defence and microbial evasion.
For students with interests in infection biology, the module will enhance skills and enable critically evaluation of key concepts, technologies and multifactorial considerations circumscribing diagnostics, therapeutics and vaccines. The module is topical in light of the current pandemic. The research-connected teaching will focus on prevention, limitation and treatment of infectious disease.
The module comprises lectures, workshops and seminars and uses active-learning delivery methods to ensure students can synthesise and evaluate relative merits, attributes, issues and applications of the topics. There are two coursework assessments in the module: 1) writing a report on a selected emerging pathogen that communicates the multifactorial considerations for researchers and society 2) presentation of a key factor that contributes to or affects disease emergence and the response by society or an agency. Materials will be included on the VLE to develop digital fluency and promote assimilation and appraisal of the module content.
With the advent of genomics and functional genomics, biology has become a quantitative data-rich discipline. This has created unprecedented opportunities in virtually every area of life sciences. With the right tools, it is now possible to address fundamentally important biological questions simply analysing already available datasets. This module is designed to prepare students for this very challenge. The module covers the most important aspects of computational biology. These range from the analysis of large datasets to infer biological mechanisms to the use of mathematical modelling to conceptualize and simulate complex biological phenomena. In addition to providing an intuitive overview of the basic theoretical principles, the module will focus on real life applications through multiple cases studies. Among these, students will learn how to identify drug targets and mechanisms of drug resistance and how to understand mathematical models of biological systems. They will then learn aspects of quantitative system pharmacology and physiologically based pharmacokinetic modelling pharmacokinetic/pharmacodynamic modelling.
The module will be taught through a combination of lectures, workshops and seminars. The module will be assessed via two written reports.
Proteomics and metabolomics represent powerful tools towards unbiased, quantitative and high-throughput analysis of biological systems. Rapid “omic” technological developments in the post‐genomic era have provided insights into protein structures, biosynthesis and interactions, as well as the complex metabolic processes that are of significant importance in biological and medical research. The aims of this course are to provide a comprehensive understanding of proteomic and metabolomic techniques and related data analysis, and to illustrate how they can be applied in fundamental biological research and industrial applications. The module will be taught by lectures and workshops. The module will be assessed via two a scientific reports.
Synthetic Biology and Biotechnology will provide an in-depth understanding of the grand challenges in biotechnological applications and the principles underlying synthetic biology and modern biotechnological techniques that are designed to sustainably address specific problems. The module also aims to teach tools and strategies being developed and applied in the rapidly expanding field of synthetic biology and train students with practical experience in green biotechnology.
The module will be taught through a combination of lectures and workshops. The lectures will convey basic knowledge or the lecturer’s own research work. The workshops will provide students with the opportunity to analyse relevant data relevant to the biotechnology field. The module will be assessed via a scientific report and a scientific review.
You will be taught using a balanced mix of lectures, workshops, seminars and tutorials and practical laboratory sessions, working cooperatively in small groups right from the beginning. Academic staff are available for 1-2-1 feedback and support. Course material is available 24/7 on our online learning platform, Canvas. Your third year will comprise of formative activities such as presenting seminars, creative writing and peer teaching along with your research project which will be done either individually or in a small groups.
Students on this course are assessed with a combination of exams and coursework. Coursework includes essays, group projects, presentations and research projects. You’ll submit coursework which contributes to your final grade and during your final year, you’ll also submit your dissertation and sit your final exams.
As well as factual knowledge and understanding, life scientists need practical and organisational skills, and an ability to work both alone and with other people. You’ll be assessed with a combination of exams and continuous assessment of course work during each semester.
We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.
Studying with us means you can tailor your degree to suit you. Here's what is available on this course.
Day-to-day teaching takes place in state of the art facilities in one of the largest Biosciences schools in the UK meaning you can choose modules from across the entire spectrum of health and life sciences complemented also by links with the schools of dentistry, veterinary and tropical medicine. You’ll also have access to a wealth of renowned museums, libraries and galleries.
From arrival to alumni, we’re with you all the way:
Want to find out more about student life?
Chat with our student ambassadors and ask any questions you have.
A day in the life of Chemistry student Amy
Employability is embedded into the Pharmacology BSc (Hons) programme and can be the necessary stepping stone into a successful career in many life science sectors in clinical trials, manufacturing, regulatory affairs, intellectual property and scientific writing.
Your tuition fees, funding your studies, and other costs to consider.
UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland) | |
---|---|
Full-time place, per year | £9,535 |
Year in industry fee | £1,850 |
Year abroad fee | £1,385 |
International fees | |
---|---|
Full-time place, per year | £29,100 |
Year in industry fee | £1,850 |
Year abroad fee | £14,550 |
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. Learn more about fees and funding.
We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This includes the costs associated with placements or internships, and the optional field course in Uganda.
Find out more about the additional study costs that may apply to this course.
We offer a range of scholarships and bursaries that could help pay your tuition and living expenses.
We've set the country or region your qualifications are from as United Kingdom. Change it here
The qualifications and exam results you'll need to apply for this course.
We've set the country or region your qualifications are from as United Kingdom. Change it here
Your qualification | Requirements |
---|---|
A levels |
AAB including Chemistry A level plus a second science, preferably Biology, at A level. Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is ABB with A in the EPQ. You may automatically qualify for reduced entry requirements through our contextual offers scheme. If you don't meet the entry requirements, you may be able to complete a foundation year which would allow you to progress to this course. Available foundation years: |
T levels |
Health and Science (Science pathway) is accepted with an overall grade of Distinction to include B in the core. Applicants should contact us by completing the enquiry form on our website to discuss specific requirements in the core components and the occupational specialism. |
GCSE | 4/C in English and 4/C in Mathematics |
Subject requirements |
Chemistry and a second science, preferably Biology and A level. |
BTEC Level 3 National Extended Diploma |
D*DD in Applied Science with a selection of preferred units in Biology and Chemistry, to include Distinction in Units 1 and 5 (Principles and Applications of Science I and II). For previous BTEC (QCF) qualification: D*DD in Applied Science with a selection of preferred units in Biology and Chemistry, with at least 120 Level 3 credits at Distinction. Please note alternative BTEC subjects are not acceptable for this programme. |
BTEC Applied Science unit requirements | |
International Baccalaureate |
34 points including 6 in Higher Level Chemistry and 5 in another Higher Level science subject. |
Irish Leaving Certificate | H1, H1, H2, H2, H2, H3 |
Scottish Higher/Advanced Higher |
Not accepted without Advanced Highers at grades ABB |
Welsh Baccalaureate Advanced | Accepted at grade B as equivalent to a third non-science A level at grade B. |
Access | 45 Level 3 credits in graded units in a relevant Diploma, including 30 at Distinction and a further 15 with at least Merit. 15 Distinctions are required in each of Chemistry and Biology. GCSE Mathematics and English grade C/4 also required. |
International qualifications |
Many countries have a different education system to that of the UK, meaning your qualifications may not meet our entry requirements. Completing your Foundation Certificate, such as that offered by the University of Liverpool International College, means you're guaranteed a place on your chosen course. |
You'll need to demonstrate competence in the use of English language, unless you’re from a majority English speaking country.
We accept a variety of international language tests and country-specific qualifications.
International applicants who do not meet the minimum required standard of English language can complete one of our Pre-Sessional English courses to achieve the required level.
English language qualification | Requirements |
---|---|
IELTS | 6.5 overall, with no component below 5.5 |
TOEFL iBT | 88 overall, with minimum scores of listening 17, writing 17, reading 17 and speaking 19. TOEFL Home Edition not accepted. |
Duolingo English Test | 120 overall, with no component below 95 |
Pearson PTE Academic | 61 overall, with no component below 59 |
LanguageCert Academic | 70 overall, with no skill below 60 |
Cambridge IGCSE First Language English 0500 | Grade C overall, with a minimum of grade 2 in speaking and listening. Speaking and listening must be separately endorsed on the certificate. |
Cambridge IGCSE First Language English 0990 | Grade 4 overall, with Merit in speaking and listening |
Cambridge IGCSE Second Language English 0510/0511 | 0510: Grade B overall, with a minimum of grade 2 in speaking. Speaking must be separately endorsed on the certificate. 0511: Grade B overall. |
Cambridge IGCSE Second Language English 0993/0991 | 0993: Grade 6 overall, with a minimum of grade 2 in speaking. Speaking must be separately endorsed on the certificate. 0991: Grade 6 overall. |
International Baccalaureate English A: Literature or Language & Literature | Grade 5 at Standard Level or grade 5 at Higher Level |
International Baccalaureate English B | Grade 7 at Standard Level or grade 6 at Higher Level |
Cambridge ESOL Level 2/3 Advanced | 176 overall, with no paper below 162 |
Do you need to complete a Pre-Sessional English course to meet the English language requirements for this course?
The length of Pre-Sessional English course you’ll need to take depends on your current level of English language ability.
Find out the length of Pre-Sessional English course you may require for this degree.
Have a question about this course or studying with us? Our dedicated enquiries team can help.
Last updated 6 November 2024 / / Programme terms and conditions