Product Design Engineering MEng #### **COURSE DETAILS** • A level requirements: ABB • UCAS code: HW25 • Study mode: Full-time Length: 4 years #### **KEY DATES** • Apply by: <u>29 January 2025</u> Starts: 22 September 2025 ### **Course overview** This programme brings together the traditional discipline of design engineering and new product development. The result is a truly modern engineering degree that provides you with a solid technical grounding in engineering that prepares you for a successful career in industry. #### INTRODUCTION You'll study core engineering subjects such as solid mechanics, fluid mechanics, thermodynamics, materials and electronics and computer programming. Alongside, you'll learn product design techniques such as design communication, human factors, product development and project management. These foundations will give you an understanding of the science that underpins product design engineering. In years three and four, you will move on to advanced engineering science, working on complex design engineering projects that reflect real-life in industry. Unique to this programme is a 300-hour individual product design engineering project on a topic of your choice, demonstrating design and engineering knowledge as well as practical design skills. you will also take part in a two-year Capstone project, which is designed to transform students from novice design engineers into professionals. This programme also has a year abroad option, an incredible opportunity to spend an academic year at one of our partner universities. On the 4-year integrated masters programme, you can go abroad either between Year 2 and 3 (apply in Year 2) OR Year 3 and 4 (apply in Year 3). #### WHAT YOU'LL LEARN Design engineering and new product development - Work on complex design engineering projects that reflect real-life in industry - 300-hour individual product design engineering project on a topic of your choice - Two-year Capstone project in years three and four #### **Course content** Discover what you'll learn, what you'll study, and how you'll be taught and assessed. #### **YEAR ONE** In year one you will study the core engineering subjects that provide fundamental knowledge of engineering science alongside product design techniques that underpins the practice of product design engineering. #### **COMPULSORY MODULES** #### **SOLIDS AND STRUCTURES 1 (ENGG110)** Credits: 15 / Semester: whole session This module aims to introduce students to the fundamental concepts and theory of how engineering structures work to sustain loads. It will also show how stress analysis leads to the design of safer structures. It will also provide students with the means to analyse and design basic structural elements as used in modern engineering structures. #### **DESIGN COMMUNICATION (ENGG115)** Credits: 7.5 / Semester: semester 2 This module provides students with essential foundational skills in effective hand sketching, visualisation, and final presentation of design ideas. Students are instructed in principles, examples, and demonstrations regarding the use of a variety of design communication media and techniques, for the purposes of conceiving, developing and presenting product design ideas. #### **ENERGY SCIENCE (ENGG116)** Credits: 15 / Semester: whole session To develop an understanding of the basic principles of fluid mechanics, the laws of thermodynamics, and an appreciation of how to solve simple engineering problems. To develop skills in performing and reporting simple experiments. #### PROFESSIONAL ENGINEERING: A SKILLS TOOLKIT (ENGG111) Credits: 30 / Semester: whole session This module aims to provide students with an early understanding of the preliminary design processes including engineering drawing/visualisation, data analysis, computer aided engineering. It includes a team project and develops report writing and oral presentation skills. It also introduces vital topics of engineering sustainability and engineering ethics. It develops student ability to reflect upon and record their learning and development. #### **ENGINEERING MATHEMATICS (ENGG198)** #### Credits: 22.5 / Semester: whole session ENGG198 is a Year 1 mathematics module for students of programmes taught in the School of Engineering, e.g. Aerospace, Civil, Architectural, Mechanical, Product Design and Industrial Design Engineering. It is designed to reinforce and build upon A-level (or equivalent) mathematics, providing you with the strong background required in your engineering studies and preparing you for Year 2 mathematics modules. #### **INTRODUCTION TO ENGINEERING MATERIALS (MATS105)** #### Credits: 15 / Semester: whole session To provide students with a basic introduction to various classes of engineering materials, their mechanical properties, deformation and failure and how the properties structure and processing can be controlled to design materials with desired properties for various engineering applications. Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed. #### **YEAR TWO** In year two you will continue to study core engineering subjects solidifying the fundamental knowledge of engineering science in these subjects. #### **COMPULSORY MODULES** #### **PRODUCT DEVELOPMENT 2 (ENGG220)** #### Credits: 15 / Semester: whole session Following on from Y1, this module aims to further develop the student understanding of product development. In an open-ended studio setting, students will build on Y1 learning and further gain an understanding and appreciation of getting from an idea to a finished product. Successful students will be able to develop and articulate ideas in the form of sketch work and traditional model prototypes to an intermediate level. This will be assessed through project work. #### **HUMAN FACTORS IN PRODUCT DESIGN: THEORY (ENGG222)** #### Credits: 7.5 / Semester: semester 1 The module will introduce students to anthropometric and ergonomic concepts, and to the capabilities and constraints of the physical, cognitive and cultural makeup of human beings. Successful candidates will have acquired knowledge and understanding of how human factors affects the design and development of new products. #### **HUMAN FACTORS IN PRODUCT DESIGN: PRACTICE (ENGG224)** #### Credits: 7.5 / Semester: semester 1 This module follows on from the prerequisite module, Human Factors: Theory, this module will continue to develop anthropometric and ergonomic concepts, and the capabilities and constraints of the physical, cognitive and cultural makeup of human beings. Successful candidates will have acquired knowledge and understanding of how human factors affect the design and development of new products. #### **ENGINEERING MATHEMATICS II (MATH299)** #### Credits: 7.5 / Semester: semester 1 To introduce some advanced Mathematics required by Engineers, Aerospace Engineers, Civil Engineers and Mechanical Engineers. To assist students in acquiring the skills necessary to use the mathematics developed in the module. #### **MANAGING PRODUCT DEVELOPMENT (MNGT205)** #### Credits: 7.5 / Semester: semester 1 The module teaches the management of new product development. It is taught in a traditional lecture style culminating in an exam. Successful students will have acquired knowledge and understanding at a broad level of the process and how it is executed in a modern industrial environment. #### **ENGINEERING DESIGN (MECH212)** #### Credits: 15 / Semester: whole session Professional Engineering can be defined as the application of science in the solution of problems and the development of new products, processes and systems. It is vital that all Engineering graduates have a solid design education; and this module is a core part of that. In Year 1 students are introduced to the basic tools and techniques involved in engineering design. In this module students are taught the basics of design theory in a lecture setting; but crucially they are required to apply this learning in a variety of group and individual projects: to design several innovative engineering products Students are given a design brief and are "coached" through product design specification; creative conceptual design; they complete a detailed design & 3D CAD modelling project; they consider design for manufacture, assembly and environment; and materials selection. The module also enables students to develop and practice teamwork, communication, project management and problem solving skills. #### **THERMODYNAMICS (MECH217)** Credits: 15 / Semester: whole session Steam, standard air and refrigeration cycles #### **SOLIDS & STRUCTURES 2 (ENGG209)** #### Credits: 15 / Semester: whole session This module aims to introduce students to techniques for load and displacement analysis of simple structures. #### **PRODUCT FORM AND MATERIALS (ENGG226)** #### Credits: 7.5 / Semester: semester 1 This module aims to introduce students to materials and manufacturing issues at the core of industrial design practice. Students will develop an appreciation of how materials positively and negatively influence people's perception, appreciation and experiences of designed products. Students will also gain an understanding of the key considerations involved in turning ideas for product form into manufacturable components. An active learning approach will be taken, where students engage in practical exercises and projects to develop their knowledge and skills. #### MATERIALS PROCESSING AND SELECTION I (MATS214) #### Credits: 7.5 / Semester: semester 1 This module introduces the main materials processing and manufacturing techniques used to shape metals. It also introduces technologies used to modify the surface properties of metal components, and heat-treatment procedures used to change materials' mechanical properties. #### **MATERIALS PROCESSING AND SELECTION II (MATS210)** #### Credits: 7.5 / Semester: semester 2 This module covers non-metallic materials and materials selection. The students will understand the processing, microstructure and properties of ceramic, polymer and composite materials. The students will also learn how to derive materials performance indices and select materials for mechanical design. #### **PROJECT MANAGEMENT (MNGT202)** #### Credits: 7.5 / Semester: semester 1 Project Management is a core skill for professional engineers of all types and a sound education in this subject area is required by the professional accrediting bodies. The knowledge and skills developed in this module will equip students for their future UG project work and for their careers ahead. This module teaches students the theory of fundamental techniques in project management, risk management, and cost management. In this modules student undertake a group "virtual project" in which they undertake all stages of project management involved n a major construction projects. The five virtual project tasks require students to apply their theoretical learning; and they provide an opportunity to develop key professional skills. Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed. #### **YEAR THREE** In year three, you move on to study advanced engineering science and work on complex design engineering projects that reflect real-life in industry. #### **COMPULSORY MODULES** #### **INDIVIDUAL DESIGN PROJECT (INDD341)** Credits: 30 / Semester: whole session The Year 3 Individual Design Project; 300 hours student work over 2 semesters; 3 assessment stages: (1) Project Plan and Literature Review (PPLR) – 10%; (2) Interim presentation and viva – 20%; (3) Final report, viva and artefact – 70%. #### **MECHANICAL ENGINEERING CAPSTONE 1 (MECH327)** #### Credits: 15 / Semester: whole session The 2-year Capstone Projects are a hallmark of the Mechanical Engineering MEng programmes at Liverpool. They are group projects in which students apply their scientific knowledge, design training and management skills to design-build-test innovative engineering products or systems. These projects provide students an opportunity to develop and evidence a wide range of technical, personal and professional skills. The Capstone modules make the greatest contribution to graduate employability. Students are given the choice of project from a portfolio of 6-8 options: some target international sporting competition (eg Velocipede or Formula Student); others are industryled and address real world challenges (eg Nuclear Rover decommissioning robot with NNL or Paediatric Wheelchairs with Alder Hey Hospital). The range of available projects varies each year. Each project team is assigned an academic project supervisor and a dedicated member of technical staff. You will work closely with these staff and a range of other technical experts from industry and/or the research community. It should be noted that the students "own" their project and it is their responsibility to specify, plan, manage and report on all project work. Students will be timetabled for 4-hours per week but will be expected to spend a significant amount of additional time working on their project. A variety of assessment methods are used that are as close as possible to professional engineering practice. At four key points in the year the Careers and Employability Service will join the module to help students reflect on, record in CV, and communicate at interview the professional development. #### **PRODUCT DEVELOPMENT 3 (ENGG320)** #### Credits: 15 / Semester: whole session Following on from Y1 and Y2, this module aims to further develop the student understanding of product development. In an open-ended studio setting, students will build on Y1 and Y2 learning and further gain an understanding and appreciation of getting from an idea to a finished product. Successful students will be able to develop and articulate ideas in the form of sketch work and traditional model prototypes to an advanced level. This will be assessed through project work. #### **ADVANCED MODERN MANAGEMENT (MNGT352)** #### Credits: 7.5 / Semester: semester 1 The Aims of this module are as follows: To introduce the student to various aspects of advanced modern management. To develop a knowledge and understanding of modern management tools. To stimulate an appreciation of management and its importance in organisational success. #### **MATERIALS DESIGN (MATS303)** #### Credits: 7.5 / Semester: semester 2 To develop an understanding of the important factors in materials selection and process selection for engineering components' design and manufacture. To develop skills in communication, investigative research, experimental techniques, and team-working, including presentation skills associated with technical posters and wikis. #### **HEAT TRANSFER (MECH301)** #### Credits: 15 / Semester: semester 2 The aim of this module is to give the students a good understanding of the basic mechanisms of heat transfer and to equip them to solve significant engineering problems. They will also learn about different designs of heat exchanger and how to carry out performance/design calculations. #### **MECHATRONICS (MECH316)** #### Credits: 7.5 / Semester: semester 1 This module aims to provide students with an appreciation of the challenges related to the design of Mechatronics systems. Both hardware and software integration issues will be studied within this module. General design principles will be introduced first and learning will focus on the popular Arduino platform. #### **MANUFACTURING SYSTEMS (MNFG321)** #### Credits: 15 / Semester: semester 1 This module investigates how Manufacturing Systems function, considering the interaction of the Manufacturing Systems with external and internal constraints. The modules gives special emphasis to the use of Computer Integrated Manufacturing in Manufacturing Systems. A comprehensive overview is given starting with interactions with the Global economy before considering the effects at company and factory level. It then considers the function of Manufacturing Systems within the factory and company level and how this is driven by the function of the machines on the shop floor. It therefore gives a holistic view of how manufacturing systems function at all levels and how the levels interact. #### **MANAGEMENT OF DESIGN (MNGT313)** #### Credits: 7.5 / Semester: semester 2 To enable students to develop a general understanding of a wide range of aspects of the design function in a manufacturing company and its management, and in particular a comprehensive understanding of the design process. Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed. #### **YEAR FOUR** In year four, you move on to study advanced engineering science and work on complex design engineering projects that reflect real-life in industry. #### **COMPULSORY MODULES** #### **MECHANICAL ENGINEERING CAPSTONE 2 (MECH431)** Credits: 30 / Semester: whole session The 2-year Capstone Projects are a hallmark of the Mechanical Engineering MEng programmes at Liverpool. They are group projects in which students apply their scientific knowledge, design training and management skills to design-build-test innovative engineering products or systems. These projects provide students an opportunity to develop and evidence a wide range of technical, personal and professional skills. The Capstone modules make the greatest contribution to graduate employability. Students are given the choice of project from a portfolio of 6-8 options: some target international sporting competition (eg Velocipede or Formula Student); others are industryled and address real world challenges (eg Nuclear Rover decommissioning robot with NNL or Paediatric Wheelchairs with Alder Hey Hospital). The range of available projects varies each year. Each project team is assigned an academic project supervisor and a dedicated member of technical staff. You will work closely with these staff and a range of other technical experts from industry and/or the research community. It should be noted that the students "own" their project and it is their responsibility to specify, plan, manage and report on all project work. Students will be timetabled for 4-hours per week but will be expected to spend a significant amount of additional time working on their project. A variety of assessment methods are used that are as close as possible to professional engineering practice. At four key points in the year the Careers and Employability Service will join the module to help students reflect on, record in CV, and communicate at interview the professional development. #### **PRODUCT DEVELOPMENT 4 (ENGG420)** #### Credits: 15 / Semester: whole session Following on from previous years, this module aims to further develop the student understanding of product development. In an open-ended studio setting, students will build on prior learning and further gain an understanding and appreciation of getting from an idea to a finished product. Successful students will be able to develop and articulate ideas in the form of sketchwork and traditional model prototypes to a fluent level. This will be assessed through project work. #### **VIRTUAL REALITY (MNFG421)** #### Credits: 15 / Semester: semester 2 This module aims to develop student understanding of modern product visualisation and simulation techniques. In an open-ended 3D environment setting, students will gain an understanding and appreciation of visualising environments and products. Successful students will be able to develop and articulate product concepts in 3D virtual space at an advanced level. This will be assessed through project work. #### **FINITE ELEMENT ANALYSIS (MECH452)** #### Credits: 7.5 / Semester: semester 1 In this module the students will gain a basic understanding of the Finite Element method and learn to use Abaqus Finite Element software. This software will then be used to analyse a variety of different problems which are relevant to both mechanical and civil engineers #### **ADDITIVE MANUFACTURING (MNFG610)** #### Credits: 7.5 / Semester: semester 1 To provide an overview on the role of additive manufacturing in new product development. To develop a generic understanding on the principles and the complete process chain of additive manufacturing processes. To provide an awareness on recent developments in additive manufacturing and associated technologies. #### DESIGN FOR ENVIRONMENT, MANUFACTURE AND ASSEMBLY (MNFG413) #### Credits: 7.5 / Semester: semester 2 The aim of this module is to provide an introduction to the tools and methods of Eco-design, Design for Manufacture and Assembly using real, everyday products as examples. #### LASER MATERIALS PROCESSING (MECH605) #### Credits: 15 / Semester: semester 1 The module will cover: how lasers work, what are the key beam properties of high power lasers, how the beam is deployed and delivered to the process/workpiece, safety in laser materials processing, and the working principles and industry practice for a range of laser processes. #### **ENTERPRISE STUDIES (MNGT414)** #### Credits: 7.5 / Semester: semester 2 The module teaches the concepts of Entrepreneurship, Intrapreneurship, Company Infrastructure and Investment Proposals. It is taught using lectures, class questions, case studie sand a comprehensive coursework assignment. Successful students will have acquired knowledge and understanding at mastery level of the process and how itis executed in a modern industrial environment. #### **INDUSTRIAL ROBOTICS AND AUTOMATED ASSEMBLY (MNFG409)** #### Credits: 15 / Semester: semester 2 This module investigates how industrial robots and other equipment are used and integrated into more complex automated systems. The module emphasis is upon the application and use of these systems, with less emphasis on the underlying theoretical mechanisms. The module is based in the concept of learning through doing, the underlying content being presented as videos, while the contact time is used in practical sessions using industrial robots and in the development of robotic systems using industrial simulation software. The assessments are designed to help reinforce understanding rather than short term memory. As an FHEQ level 7 module the tasks and assessments are designed to develop deeper knowledge and skill in application than that expected for those at FHEQ level 6. Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed. #### **HOW YOU'LL LEARN** We are leading the UK's involvement in the international <u>Conceive-Design-Implement-Operate (CDIO)</u> initiative – an innovative educational framework for producing the next generation of engineers. Our degree programmes encompass the development of a holistic, systems approach to engineering. Technical knowledge and skills are complemented by a sound appreciation of the life-cycle processes involved in engineering and an awareness of the ethical, safety, environmental, economic, and social considerations involved in practicing as a professional engineer. You will be taught through a combination of face-to-face teaching in group lectures, laboratory sessions, tutorials, and seminars. Our programmes include a substantial practical component, with an increasing emphasis on project work as you progress through to the final year. You will be supported throughout by an individual academic adviser. #### **HOW YOU'RE ASSESSED** Assessment takes many forms, each appropriate to the learning outcomes of the particular module studied. The main modes of assessment are coursework and examination. Depending on the modules taken, you may encounter project work, presentations (individual and/or group), and specific tests or tasks focused on solidifying learning outcomes. #### **LIVERPOOL HALLMARKS** We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens. ### Careers and employability Our research-led teaching ensures that we incorporate the latest advances in cutting-edge engineering research and our graduates have found employment in a wide range of international industries and organisations. Recent graduates have gone on to work for companies in the following industries: - Engineering and Infrastructure: ABB Ltd, Arup, Atkins, Balfour Beatty, Bentley, Corus, Halcrow, Laing O'Rourke, Mott Macdonald, Mouchel, Ramboll, Royal Haskoning, Siemens, Tarmac. - Aerospace and Aviation: Airbus, British Airways, Jaguar Land Rover, Rolls Royce. - Construction and Project Management: Costain, Metronet Rail. - Defence and Military: BAE Systems, British Army, RAF (Royal Air Force), Royal Navy. - Energy and Utilities: BMI, National Grid Transco, National Nuclear Laboratory, United Utilities. - Government organizations: Government organisations (not specifically listed), Highways Agency, Network Rail. - Glass and Materials: Pilkington. - Technology and Research: QinetiQ. 4 IN 5 OF OUR ENGINEERING STUDENTS FIND THEIR MAIN ACTIVITY AFTER GRADUATION MEANINGFUL. Graduate Outcomes, 2018-19. ### Fees and funding Your tuition fees, funding your studies, and other costs to consider. #### **TUITION FEES** | UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland) | | |---------------------------------------------------------------------------|--------| | Full-time place, per year | £9,535 | | Year in industry fee | £1,850 | | Year abroad fee | £1,385 | | International fees | | |---------------------------|---------| | Full-time place, per year | £29,100 | | Year in industry fee | £1,850 | | Year abroad fee | £14,550 | The UK full-time tuition fee, international course fee and fee for the year abroad for international students shown are correct for 2025/26 entry. We are currently awaiting confirmation of whether the year abroad fee for UK students, as well as the year in industry fee will change, so the fees shown are for 2024/25. Please note that the year abroad fee also applies to the year in China. Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. <u>Learn more about</u> <u>fees and funding</u>. #### **ADDITIONAL COSTS** We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This may include a laptop, books, or stationery. All safety equipment, other than boots, is provided free of charge by the department. Find out more about the <u>additional study costs</u> that may apply to this course. #### **SCHOLARSHIPS AND BURSARIES** We offer a range of scholarships and bursaries that could help pay your tuition and living expenses. We've set the country or region your qualifications are from as United Kingdom. <u>Change it</u> here . #### **UNDERGRADUATE GLOBAL ADVANCEMENT SCHOLARSHIP** o <u>International students</u> If you're a high-achieving international student starting an undergraduate degree with us from September 2024, you could be eligible to receive a fee discount of up to £5,000. You'll need to achieve grades equivalent to AAA in A levels. Most of our undergraduate degrees are eligible, with the exception of clinical programmes in Medicine and Dental Surgery. • #### THE LIVERPOOL BURSARY Home students If you're a UK student joining an undergraduate degree and have a household income below £35,000, you could be eligible for a Liverpool Bursary worth up to £2,000 for each year of undergraduate study. • #### **ASYLUM SEEKERS SCHOLARSHIP** Home students <u>Apply for an Asylum Seekers Scholarship and you could have your tuition fees paid in full and receive help with study costs. You'll need to have applied for asylum in the UK, or be the dependant of an asylum seeker, and be joining an eligible undergraduate degree.</u> • #### **CARE LEAVERS' OPPORTUNITY BURSARY** Home students If you've spent 13 or more weeks in Local Authority care since age 14, you could be eligible for a bursary of £3,000 per year of study. You'll need to be a UK student joining an eligible undergraduate degree and be aged 28 or above on 1 September in the year you start. • #### **COWRIE FOUNDATION SCHOLARSHIP** Home students Are you a UK student with a Black African or Caribbean heritage and a household income of £25,000 or less? You could be eligible to apply for a Cowrie Foundation Scholarship worth up to £8,000 for each year of undergraduate study. • #### **ESTRANGED STUDENTS BURSARY** Home students If you're a UK student identified as estranged by Student Finance England (or the equivalent UK funding body), you could be eligible for a bursary of £1,000 for each year of undergraduate study. • #### **GENESYS LIFE SCIENCES SCHOLARSHIP** • Home students <u>Joining a School of Biosciences degree and have a household income of less than £25,000?</u> <u>If you're a UK student, you could apply to receive £4,500 per year for three years of your undergraduate course.</u> • ## GRADUATE ASSOCIATION HONG KONG & TUNG UNDERGRADUATE SCHOLARSHIPS - International students - Hong Kong If you're an undergraduate student from Hong Kong who can demonstrate academic excellence, you may be eligible to apply for a scholarship worth £10,000 in partnership with the Tung Foundation. • #### KAPLAN DIGITAL PATHWAYS EXCELLENCE SCHOLARSHIP • International students Completed a Kaplan Digital Pathways Foundation Certificate? We're offering a £5,000 fee discount off the first year of undergraduate study for a maximum of two high achieving students joining one of our non-clinical degrees from an online Kaplan Foundation Certificate. • #### **NOLAN SCHOLARSHIPS** Home students <u>Do you live in the Liverpool City Region with a household income of £25,000 or less? Did neither of your parents attend University? You could be eligible to apply for a Nolan Scholarship worth £5,000 per year for three years of undergraduate study.</u> • #### **RIGBY ENTERPRISE AWARD** • Home students Are you a UK student with a household income of £25,000 or less? If you've participated in an eligible outreach programme, you could be eligible to apply for a Rigby Enterprise Award worth £5,000 per year for three years of your undergraduate degree. **ROLABOTIC SCHOLARSHIP** Home students Are you a UK student with a household income of £25,000 or less? Did neither of your parents attend University? You could be eligible to apply for a ROLABOTIC Scholarship worth £4,500 for each year of your undergraduate degree. • SPORT LIVERPOOL PERFORMANCE PROGRAMME Home and international students <u>Apply to receive tailored training support to enhance your sporting performance. Our athlete support package includes a range of benefits, from bespoke strength and conditioning training to physiotherapy sessions and one-to-one nutritional advice.</u> • #### TECHNETIX BROADHURST ENGINEERING SCHOLARSHIP • Home students <u>Joining a degree in the School of Electrical Engineering, Electronics and Computer Science? If you're a UK student with household income below £25,000, you could be eligible to apply for £5,000 a year for three years of study. Two awards will be available per academic year.</u> • ## UNIVERSITY OF LIVERPOOL INTERNATIONAL COLLEGE EXCELLENCE SCHOLARSHIP International students Completed a Foundation Certificate at University of Liverpool International College (UoLIC)? We're offering a £5,000 fee discount off the first year of undergraduate study to some of the highest achieving students joining one of our non-clinical degrees from UoLIC. • ## UNIVERSITY OF LIVERPOOL INTERNATIONAL COLLEGE FIRST CLASS SCHOLARSHIP International students We're offering a £1,000 fee discount for years 2 and 3 of undergraduate study to eligible students progressing from University of Liverpool International College. You'll need to be studying a non-clinical subject and get an average of 70% or above in year 1 of your degree. • ## UNIVERSITY OF LIVERPOOL INTERNATIONAL COLLEGE IMPACT PROGRESSION SCHOLARSHIPS • International students If you're a University of Liverpool International College student awarded a Kaplan Impact Scholarship, we'll also consider you for an Impact Progression Scholarship. If selected, you'll receive a £3,000 fee discount off the first year of your undergraduate degree. ### YOUNG ADULT CARER'S (YAC) BURSARY #### • Home students If you're a young adult and a registered carer in the UK, you might be eligible for a £1,000 bursary for each year of study. You'll need to be aged 18-25 on 1 September in the year you start your undergraduate degree. ## **Entry requirements** The qualifications and exam results you'll need to apply for this course. | Your qualification | Requirements About our typical entry requirements | |-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | A levels | ABB including Mathematics and a second Science. Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is BBB with A in the EPQ. You may automatically qualify for reduced entry requirements through our contextual offers scheme. | | GCSE | 4/C in English and 4/C in Mathematics | | Subject requirements | Mathematics and a second science. Applicants following the modular Mathematics A Level must be studying A Level Physics or Further Mathematics as the second science (or must be studying at least one Mechanics module in their Mathematics A Level). Accepted Science subjects are Biology, Chemistry, Computing, Economics, Electronics, Environmental Science, Further Mathematics, Geography, Geology, Human Biology, Physics, Statistics and Design & Technology - Product Design. For applicants from England: For science A levels that include the separately graded practical endorsement, a "Pass" is required. | | BTEC Level 3 National
Extended Certificate | Acceptable at grade Distinction alongside BB in A Level
Mathematics and a second science. | | BTEC Level 3 Diploma | Distinction Distinction in relevant BTEC considered alongside
A Level Mathematics grade B. Accepted BTECs include
Aeronautical, Aerospace, Mechanical, Mechatronics and
Engineering. | | Your qualification | Requirements About our typical entry requirements | |---|--| | BTEC Level 3 National
Extended Diploma | Not accepted without grade B in A Level Mathematics. | | International
Baccalaureate | 33 overall, including 5 at Higher Level Mathematics and Physics | | Irish Leaving
Certificate | H1, H2, H2, H2, H3, H3, including H2 in Higher Mathematics and
Higher Second Science. We also require a minimum of H6 in
Higher English or O3 in Ordinary English. | | Scottish
Higher/Advanced
Higher | Pass Scottish Advanced Highers with grades ABB including
Mathematics and a second science. | | Welsh Baccalaureate
Advanced | Acceptable at grade B alongside AB in A Level Mathematics and a second science. | | Cambridge Pre-U
Diploma | D3 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade A M2 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade B Global Perspectives and Short Courses are not accepted. | | Access | Considered if taking a relevant subject. 42 Level 3 credits at Distinction, including 15 Level 3 credits in Mathematics is required. GCSE English and Mathematics grade C/4 or above also required. | | International
qualifications | Many countries have a different education system to that of the UK, meaning your qualifications may not meet our entry requirements. Completing your Foundation Certificate, such as that offered by the <u>University of Liverpool International College</u> , means you're guaranteed a place on your chosen course. | #### **ALTERNATIVE ENTRY REQUIREMENTS** - If your qualification isn't listed here, or you're taking a combination of qualifications, contact us for advice - <u>Applications from mature students</u> are welcome. # THE ORIGINAL REDBRICK © University of Liverpool – a member of the Russell Group Generated: 16 Jan 2025, 16:13