

Civil and Structural Engineering MEng

COURSE DETAILS

• A level requirements: AAB

• UCAS code: H220

Study mode: Full-time

• Length: 4 years

KEY DATES

Apply by: <u>29 January 2025</u>

Starts: 22 September 2025

Course overview

Whether you are interested in designing roads, airports, bridges, stadia, hospitals, power stations, harbours or water supply systems, a degree in Civil Engineering will teach you the latest construction technologies and design methods. There has never been a greater need for well qualified Civil Engineers: towns and coasts in need of flood defences; people and freight in need of safe and efficient transport systems; ever more urgent challenges in environmental conservation, sustainable design and infrastructure maintenance.

INTRODUCTION

Our emphasis is on active learning, supported by traditional lectures and tutorials, as well as the opportunities to be involved in research-led teaching, conducted in collaboration with industry, government, research laboratories and academics around the world.

The programme gives you the opportunity to undertake an individual research project in year three. Teaching staff offer projects based on their research expertise.

In year four, you will undertake a multidisciplinary group design project that brings together students specialising in various aspects of civil engineering, to work as a team to produce a portfolio. Students on the Civil and Structural Engineering programme will be acting as structural engineers for the project. Recent projects have included a ferry terminal scheme and an Olympic-size swimming pool.

This programme also has a year abroad option, an incredible opportunity to spend an academic year at one of our partner universities. On the 4-year integrated masters programme, you can go abroad either between Year 2 and 3 (apply in Year 2) OR Year 3 and 4 (apply in Year 3).

This programme also has a year abroad option, an incredible opportunity to spend an academic year at one of our partner universities.

WHAT YOU'LL LEARN

- The key aspects underpinning the field of Civil Engineering
- Leading and working in teams
- How to undertake research
- · Adapting to a busy hands-on industry environment
- Critical thinking
- Teamwork
- · How to present and communicate clearly

ACCREDITATION

This degree is accredited by the Joint Board of Moderators (JBM) comprising the Institution of Civil Engineers, Institution of Structural Engineers, Institute of Highway Engineers, the Chartered Institution of Highways and Transportation and the Permanent Way Institution on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer (CEng).

See www.jbm.org.uk for further information.

Course content

Discover what you'll learn, what you'll study, and how you'll be taught and assessed.

YEAR ONE

COMPULSORY MODULES

GEOMECHANICS 1 (CIVE120)

Credits: 7.5 / Semester: semester 2

The Geotechnical Engineer is responsible for the safe design of how a building or infrastructure asset interacts with the ground. This module introduces students to the role of the Geotechnical Engineer and the fundamental principles and concepts that form the basis of soil mechanics

ENGINEERING MATHEMATICS (MATH198)

Credits: 22.5 / Semester: semester 2

MATH198 is a Year I mathematics module for students of programmes taught in the School of Engineering, e.g. Aerospace, Civil, Mechanical or Industrial Design Engineering. It is designed to reinforce and build upon A-level mathematics, providing you with the strong background required in your engineering studies and preparing you for the Year 2 mathematics module MATH299 (Mathematics engineering II). In the first semester, the foundations are laid: differential calculus, vector algebra, integration and applications. Semester two covers complex numbers, differential equations, Laplace transformations and functions of two variables

SOLIDS AND STRUCTURES 1 (ENGG110)

Credits: 15 / Semester: whole session

This module aims to introduce students to the fundamental concepts and theory of how engineering structures work to sustain loads. It will also show how stress analysis leads to the design of safer structures. It will also provide students with the means to analyse and design basic structural elements as used in modern engineering structures.

ENERGY SCIENCE (ENGG116)

Credits: 15 / Semester: whole session

To develop an understanding of the basic principles of fluid mechanics, the laws of thermodynamics, and an appreciation of how to solve simple engineering problems. To develop skills in performing and reporting simple experiments.

CIVIL AND ARCHITECTURAL ENGINEERING PROJECTS (CIVE162)

Credits: 30 / Semester: whole session

This module provides students with an introduction to projects within the built environment, the roles of professional engineers, the professions they will interact with, and the skills required by a professional engineer operating in the built environment

INTRODUCTION TO ENGINEERING MATERIALS (MATS105)

Credits: 15 / Semester: whole session

To provide students with a basic introduction to various classes of engineering materials, their mechanical properties, deformation and failure and how the properties structure and processing can be controlled to design materials with desired properties for various engineering applications.

DIGITAL ENGINEERING (CIVE125)

Credits: 15 / Semester: whole session

The module introduces both computer programming concepts and surveying of the built environment in engineering contexts. In the first semester, students will study basic programming concepts using MATLAB (or equivalent proprietary software packages) enabling them to write a basic modular program to solve a data analysis problem, which will be transferable to other programming languages. In the second semester, students will explore through personal use the ways construction equipment and digital technologies are used for surveying, inclusive of data recording, survey design and documentation, plus data analysis and interpretation. This work in the second semester will be supplemented by applying Building Information Modelling (BIM) using industry standard software in an applied digital exercise.

Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed.

YEAR TWO

COMPULSORY MODULES

GEOMECHANICS 2 (CIVE220)

Credits: 15 / Semester: semester 1

This module introduces students to the theoretical framework of geotechnical engineering. It emphasizes soil as a material and provides an introduction to the application of the theory to practical geotechnical engineering problems including bearing capacity of foundations.

GROUP DESIGN PROJECT (CIVE263)

Credits: 15 / Semester: semester 2

The students are provided with a realistic design brief that needs to be met over the course of the semester. This is achieved via a defined set of realistic work stages which enables the students to produce an open-ended structural design within a group working environment, thus promoting teamwork and industrial awareness. The final deliverable will be the submission of structured design portfolio/sketchbook and oral presentation to academic members of staff and relevant industry partners.

HYDRAULICS (CIVE210)

Credits: 15 / Semester: semester 2

Hydraulics belongs to applied fluid mechanics and covers hydrostatics and hydrodynamics of liquid such as water. The module focuses on pipe flows and open channel flows, which occur in a wide range of science and engineering problems. It is delivered via lectures, laboratory class and tutorials.

STRUCTURAL ELEMENT DESIGN (CIVE241)

Credits: 15 / Semester: semester 1

This module provides an overview of basic structural design concepts and the application of common materials in construction including steelwork, reinforced concrete (RC), timber, and masonry. It covers fundamental principles and theoretical background and provides design examples based on Eurocodes.

ENVIRONMENTAL PLANNING AND INFRASTRUCTURE PROJECT (CIVE261)

Credits: 15 / Semester: semester 1

This module provides students with an introduction to the contexts of transport and infrastructure, and the skills required by aprofessional engineer operating in this sector.

PROGRAMMING FOR CIVIL ENGINEERS (CIVE286)

Credits: 7.5 / Semester: semester 2

Students will be introduced to the basic concepts of computer programming and Excel to solve engineering problems. Gain knowledge of basic procedural programming concepts. Become proficient in the use of Excel and Excel Macros. Enhance problem solving skills. Gain experience in solving engineering problems using a software tool.

ENGINEERING MATHEMATICS II (CIVE299)

Credits: 7.5 / Semester: semester 1

To introduce some advanced Mathematics required by Engineers, Aerospace Engineers, Civil Engineers and Mechanical Engineers. To assist students in acquiring the skills necessary to use the mathematics developed in the module.

STRUCTURAL BEHAVIOUR (CIVE203)

Credits: 15 / Semester: semester 2

This module builds on Year 1 structural analysis focussing on detailed concepts of structural mechanics to improve the understanding of students related to structural behaviour. Additionally, computer-based structural analysis is introduced as well as applications are discussed in a structural laboratory. Seminars with professional engineering from industry and academia are also organized to enhance professional networks and show different career paths.

TRANSPORTATION ENGINEERING AND MODELLING (CIVE212)

Credits: 7.5 / Semester: semester 1

Students will be introduced to the basic concepts of transportation engineering with a focus on transportation planning, traffic flow modelling, traffic control and sustainable transport infrastructure systems to solve transportation problems. This module aims to equip students to articulate the core principles of transport design and network analysis, understand and model traffic flow, measure traffic characteristics, and interpret these measurements for infrastructure modifications or advancements. It covers traffic signal timing design, featuring several practical examples, as well as urban traffic control. Additionally, the module addresses the design of sustainable transport infrastructure systems, focusing on sustainable pavement design and construction.

ENVIRONMENTAL ENGINEERING 1 (CIVE204)

Credits: 7.5 / Semester: semester 2

As the world's population and economy have grown, environmental pressures have increased, and many of the world's major ecosystem have been degraded or used unsustainably. Environmental engineering is a profession that works to use the properties of matter and sources of energy in the solution of problems of environmental sanitation. These include the provision of safe, palatable, and ample public water supplies; the proper disposal of or recycle of wastewater and solid wastes; the adequate drainage of urban and rural areas for proper sanitation; and the control of water and soil pollution.

This module aims to introduce students to the role of the environmental engineer and fundamental principles and concepts that form the basis of environmental engineering. The emphasis is on water and soil pollution, catchment hydrology and solid waste management.

Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed.

YEAR THREE

COMPULSORY MODULES

INDIVIDUAL PROJECT (ENGG341)

Credits: 30 / Semester: whole session

The Year 3 individual research project; 300 hours student work over 2 semesters; 3 assessment stages (proposal 5%, interim 20%, final 75%).

GEOTECHNICAL ENGINEERING (CIVE320)

Credits: 15 / Semester: semester 2

This module introduces students to the theory and methods that underpin geotechnical engineering practice. It covers the design of shallow and deep foundations, retaining walls, slopes and other structures according to Eurocode 7.

STRUCTURAL DYNAMICS (ENGG301)

Credits: 7.5 / Semester: semester 1

This module introduces essential principles necessary for the understanding of vibrations in Civil Engineering structures.

EARTHQUAKE ENGINEERING (CIVE342)

Credits: 7.5 / Semester: semester 1

This module aims at introducing students to earthquake engineering. It acquaints students with basic skills for analyzing the seismic response of structures subjected to earthquake excitations using structural dynamics principles. Background knowledge in engineering seismology will be covered to provide a comprehensive perspective to the topic. Seismic design principles are also introduced to provide a sound understanding of the rationale behind seismic codes.

SUSTAINABLE DESIGN AND CONSTRUCTION MANAGEMENT (CIVE350)

Credits: 15 / Semester: whole session

Sustainability and Management are areas of professionalism that are very important within the construction industry and wider built environment sector. Both areas are also emerging as new and exciting career paths for many graduate civil engineers plus architectural engineers. On completion of this module, students will understand a range of approaches to designing for climate change adaptation and net-zero carbon implementation, as well as appreciate diverse management practices associated with modern methods of construction plus industry innovation. In addition, skills will be gained by students in career evaluation, market analysis, design appraisal, options review and project judgements, all linked to enhanced graduate employment and responsible decision-making as a professional engineer.

OLD STRUCTURES OF STEEL, TIMBER AND MASONRY (CIVE334)

Credits: 15 / Semester: semester 2

It has been shown that the refurbishment of existing buildings is a more sustainable option than demolition and reconstruction as it leads to significant reductions in CO2 emissions. Additionally, the benefits of refurbishment (in comparison to new construction) extend beyond CO2 emissions and reduced energy expenditure: (i) less raw materials, (ii) less waste, (iii) heritage conservation and community retention and finally, (iv) well restored structures have a high economic value. This module gives students an insight into the structural appraisal and reuse of existing structures.

INTRODUCTION TO FINITE ELEMENTS (ENGG302)

Credits: 7.5 / Semester: semester 1

In this module the students will gain a basic understanding of the Finite Element method and learn to use some Finite Element software. This software will then be used to analyse a variety of different problems which are relevant to both mechanical and civil engineers.

STRUCTURAL PLANNING (CIVE340)

Credits: 15 / Semester: semester 1

An essential skill of a structural engineer is structural planning. This involves applying a knowledge of structural analysis and design together with an understanding of structural behaviour and materials to real world structural engineering problems. This module gives students an insight into the creative design challenges addressed by a practising structural engineer.

UNCERTAINTY, RELIABILITY AND RISK 1 (ENGG304)

Credits: 7.5 / Semester: semester 1

This module covers broad aspects of uncertainty quantification methods, reliability analysis and risk assessment in engineering applications. It also provides understanding of statistical analysis of engineering data and computational methods for dealing with uncertainty in engineering problems.

Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed.

YEAR FOUR

COMPULSORY MODULES

ADVANCED GEOMECHANICS (CIVE 420)

Credits: 15 / Semester: semester 1

This module introduces students to advanced theories, concepts and methods of modern geomechanics, with emphasis on: – Advanced methods of simulation – Plasticity theory – Stability analysis – Groundwater flow analysis – Constitutive modelling.

CAPSTONE: MULTIDISCIPLINARY PROJECT (CIVE462)

Credits: 30 / Semester: semester 2

This module presents an opportunity to practise comprehensive, multidisciplinary design in civil engineering. The students work in teams to provide complete solutions to demanding civil engineering design problems with some significant reliance on self, guided learning.

MATERIALS FOR DURABLE AND SUSTAINABLE CONSTRUCTION (CIVE401)

Credits: 15 / Semester: semester 1

The aim of the module is to enhance students' knowledge and understanding of the advances made in conventional construction materials and alternative construction materials that have and are currently being developed for use in construction to achieve more innovative, and sustainable structures.

STRUCTURAL SYSTEMS (CIVE405)

Credits: 15 / Semester: semester 2

This module focuses on the conceptual design of civil engineering structures, and structural behaviour and assessment. It provides a review of the basics of structural engineering analysis and design including construction of bending moment and shear force diagrams, cross-sectional analysis, material properties and basic design code requirements.

ADVANCED CONSTRUCTION MANAGEMENT (CIVE 450)

Credits: 15 / Semester: whole session

Management linked to industry innovation and employee practice is an area of professionalism that is very important

within the construction and wider built environment sector. It is also emerging as a distinctive and rewarding career path

for many graduate civil engineers plus architectural engineers. On completion of this module, students will understand a

range of approaches to project management implementation, diverse practices associated with modern methods of

construction, as well as effective judgement-making of challenging tasks in complex real-life situations. It will both prepare

graduates for professional development in civil engineering, as well as make them fully aware of multiple aspects of

strategic, operational and lifecycle management as applied to this specific industrial sector.

RISK AND UNCERTAINTY: PROBABILITY THEORY (ENGG404)

Credits: 7.5 / Semester: semester 1

This module develops understanding and appreciation of basic probability theory. It involves the quantification of uncertainties in input and models, their implementation, and the evaluation of the associated results in view of decision making. An introduction to numerical concepts will be provided. The methods shown in the module have a general applicability, which is demonstrated by examples and practical applications.

STRUCTURAL OPTIMISATION (ENGG414)

Credits: 7.5 / Semester: semester 2

This module is about classical optimisation and modern optimisation and their numerical methods. Structural optimisation and their numerical methods. Students will get an idea of how to optimise simple structure and get optimal solutions by analytical and numerical methods.

TECHNOLOGY 3.1: INTEGRATED TECHNICAL PROJECT DESIGN (ARCH361)

Credits: 15 / Semester: semester 1

The module covers the broad spectrum of construction technologies, materials and methods – from intermediate to current to emerging – by presenting the work of internationally respected architects operating in different geographical, cultural and economic contexts. Key aspects of architectural technology are discussed through precedents, with the aim to understand how material and technical choices are impacted by – and in turn able to impact – design, from concept to detailing.

The module reflects upon the multiplicity of ways in which technology can respond to site, programme, budget and users, act as a vehicle to articulate typological, spatial and haptic qualities in design, and address sustainability in the broadest sense.

The module consists of lectures, drop-ins and tutorials. The assessment is based on an individual exam, an individual peer assessment and a group coursework assignment.

Any optional modules listed above are illustrative only and may vary from year to year. Modules may be subject to minimum student numbers being achieved and staff availability. This means that the availability of specific optional modules cannot be guaranteed.

HOW YOU'LL LEARN

Our degree programmes encompass the development of a holistic, systems approach to engineering. Technical knowledge and skills are complemented by a sound appreciation of the life-cycle processes involved in engineering and an awareness of the ethical, safety, environmental, economic, and social considerations involved in practicing as a professional engineer.

You will be taught through a combination of face-to-face teaching in group lectures, laboratory sessions, tutorials, and seminars. Our programmes include a substantial practical component, with an increasing emphasis on project work as you progress through to the final year. You will be supported throughout by an individual academic adviser.

HOW YOU'RE ASSESSED

Assessment takes many forms, each appropriate to the learning outcomes of the particular module studied. The main modes of assessment are coursework and examination. Depending on the modules taken, you may encounter project work, presentations (individual and/or group), and specific tests or tasks focused on solidifying learning outcomes.

LIVERPOOL HALLMARKS

We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.

Careers and employability

Our degrees provide pathways into rewarding careers and our graduates have found employment in a wide range of international industries and organisations. As well as achieving a degree qualification, you will graduate as an industry-ready engineer who has both practical experience and highly desirable skills in the engineering industry.

Recent graduates have gone on to work for companies in the following industries:

- Engineering and Infrastructure: ABB Ltd, Arup, Atkins, Balfour Beatty, Bentley, Corus, Halcrow, Laing O'Rourke, Mott Macdonald, Mouchel, Ramboll, Royal Haskoning, Siemens, Tarmac.
- Aerospace and Aviation: Airbus, British Airways, Jaguar Land Rover, Rolls Royce.
- Construction and Project Management: Costain, Metronet Rail.
- Defence and Military: BAE Systems, British Army, RAF (Royal Air Force), Royal Navy.
- Energy and Utilities: BMI, National Grid Transco, National Nuclear Laboratory, United Utilities.
- Government organizations: Government organisations (not specifically listed), Highways Agency, Network Rail.
- Glass and Materials: Pilkington.
- Technology and Research: QinetiQ.

4 IN 5 OF OUR ENGINEERING STUDENTS FIND THEIR MAIN ACTIVITY AFTER GRADUATION MEANINGFUL.

Graduate Outcomes, 2018-19

Fees and funding

Your tuition fees, funding your studies, and other costs to consider.

TUITION FEES

UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland)		
Full-time place, per year	£9,535	
Year abroad fee	£1,385	

International fees	
Full-time place, per year	£29,100
Year abroad fee	£14,550

The UK full-time tuition fee, international course fee and fee for the year abroad for international students shown are correct for 2025/26 entry. We are currently awaiting confirmation of whether the year abroad fee for UK students will change, so the fee shown is for 2024/25. Please note that the year abroad fee also applies to the year in China.

Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. <u>Learn more about fees and funding</u>.

ADDITIONAL COSTS

We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This includes a lab coat, safety boots, and a residential construction course.

Find out more about the <u>additional study costs</u> that may apply to this course.

SCHOLARSHIPS AND BURSARIES

We offer a range of scholarships and bursaries that could help pay your tuition and living expenses.

We've set the country or region your qualifications are from as United Kingdom. <u>Change it</u> here

•

UNDERGRADUATE GLOBAL ADVANCEMENT SCHOLARSHIP

• International students

If you're a high-achieving international student starting an undergraduate degree with us from September 2024, you could be eligible to receive a fee discount of up to £5,000. You'll need to achieve grades equivalent to AAA in A levels. Most of our undergraduate degrees are eligible, with the exception of clinical programmes in Medicine and Dental Surgery.

•

THE LIVERPOOL BURSARY

• Home students

If you're a UK student joining an undergraduate degree and have a household income below £35,000, you could be eligible for a Liverpool Bursary worth up to £2,000 for each year of undergraduate study.

•

ASYLUM SEEKERS SCHOLARSHIP

• Home students

<u>Apply for an Asylum Seekers Scholarship and you could have your tuition fees paid in full and receive help with study costs. You'll need to have applied for asylum in the UK, or be the dependant of an asylum seeker, and be joining an eligible undergraduate degree.</u>

•

CARE LEAVERS' OPPORTUNITY BURSARY

Home students

If you've spent 13 or more weeks in Local Authority care since age 14, you could be eligible for a bursary of £3,000 per year of study. You'll need to be a UK student joining an eligible undergraduate degree and be aged 28 or above on 1 September in the year you start.

•

COWRIE FOUNDATION SCHOLARSHIP

Home students

Are you a UK student with a Black African or Caribbean heritage and a household income of £25,000 or less? You could be eligible to apply for a Cowrie Foundation Scholarship worth up to £8,000 for each year of undergraduate study.

•

ESTRANGED STUDENTS BURSARY

Home students

If you're a UK student identified as estranged by Student Finance England (or the equivalent UK funding body), you could be eligible for a bursary of £1,000 for each year of undergraduate study.

GENESYS LIFE SCIENCES SCHOLARSHIP

Home students

<u>Joining a School of Biosciences degree and have a household income of less than £25,000?</u>
<u>If you're a UK student, you could apply to receive £4,500 per year for three years of your undergraduate course.</u>

•

GRADUATE ASSOCIATION HONG KONG & TUNG UNDERGRADUATE SCHOLARSHIPS

- International students
- Hong Kong

<u>If you're an undergraduate student from Hong Kong who can demonstrate academic excellence, you may be eligible to apply for a scholarship worth £10,000 in partnership with the Tung Foundation.</u>

•

KAPLAN DIGITAL PATHWAYS EXCELLENCE SCHOLARSHIP

• International students

Completed a Kaplan Digital Pathways Foundation Certificate? We're offering a £5,000 fee discount off the first year of undergraduate study for a maximum of two high achieving students joining one of our non-clinical degrees from an online Kaplan Foundation Certificate.

•

NOLAN SCHOLARSHIPS

• Home students

<u>Do you live in the Liverpool City Region with a household income of £25,000 or less? Did neither of your parents attend University? You could be eligible to apply for a Nolan Scholarship worth £5,000 per year for three years of undergraduate study.</u>

•

RIGBY ENTERPRISE AWARD

Home students

Are you a UK student with a household income of £25,000 or less? If you've participated in an eligible outreach programme, you could be eligible to apply for a Rigby Enterprise Award worth £5,000 per year for three years of your undergraduate degree.

•

ROLABOTIC SCHOLARSHIP

Home students

Are you a UK student with a household income of £25,000 or less? Did neither of your parents attend University? You could be eligible to apply for a ROLABOTIC Scholarship worth £4,500 for each year of your undergraduate degree.

SPORT LIVERPOOL PERFORMANCE PROGRAMME

• Home and international students

<u>Apply to receive tailored training support to enhance your sporting performance. Our athlete support package includes a range of benefits, from bespoke strength and conditioning training to physiotherapy sessions and one-to-one nutritional advice.</u>

TECHNETIX BROADHURST ENGINEERING SCHOLARSHIP

• Home students

<u>Joining a degree in the School of Electrical Engineering, Electronics and Computer Science? If you're a UK student with household income below £25,000, you could be eligible to apply for £5,000 a year for three years of study. Two awards will be available per academic year.</u>

UNIVERSITY OF LIVERPOOL INTERNATIONAL COLLEGE EXCELLENCE SCHOLARSHIP

• International students

Completed a Foundation Certificate at University of Liverpool International College (UoLIC)? We're offering a £5,000 fee discount off the first year of undergraduate study to some of the highest achieving students joining one of our non-clinical degrees from UoLIC.

UNIVERSITY OF LIVERPOOL INTERNATIONAL COLLEGE FIRST CLASS SCHOLARSHIP

International students

We're offering a £1,000 fee discount for years 2 and 3 of undergraduate study to eligible students progressing from University of Liverpool International College. You'll need to be studying a non-clinical subject and get an average of 70% or above in year 1 of your degree.

UNIVERSITY OF LIVERPOOL INTERNATIONAL COLLEGE IMPACT PROGRESSION SCHOLARSHIPS

• International students

If you're a University of Liverpool International College student awarded a Kaplan Impact Scholarship, we'll also consider you for an Impact Progression Scholarship. If selected, you'll receive a £3,000 fee discount off the first year of your undergraduate degree.

YOUNG ADULT CARER'S (YAC) BURSARY

• Home students

If you're a young adult and a registered carer in the UK, you might be eligible for a £1,000 bursary for each year of study. You'll need to be aged 18-25 on 1 September in the year you start your undergraduate degree.

Entry requirements

The qualifications and exam results you'll need to apply for this course.

Your qualification	Requirements About our typical entry requirements
A levels	AAB including Mathematics. Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is ABB with A in the EPQ. You may automatically qualify for reduced entry requirements through our contextual offers scheme.
GCSE	4/C in English and 4/C in Mathematics
Subject requirements	Mathematics. For applicants from England: For science A levels that include the separately graded practical endorsement, a "Pass" is required.
BTEC Level 3 National Extended Certificate	Acceptable at grade Distinction* alongside BB at A level including A Level Mathematics.
BTEC Level 3 Diploma	Distinction* Distinction* in relevant BTEC considered alongside A Level Mathematics grade B. Accepted BTECs include Aeronautical, Aerospace, Construction, Mechanical, Mechatronics and Engineering.
BTEC Level 3 National Extended Diploma	D*DD in acceptable BTEC, plus B in A level Maths (not accepted without B in A level Maths)
International Baccalaureate	35 overall, including 5 at Higher Level Mathematics.

Your qualification	Requirements About our typical entry requirements
Irish Leaving Certificate	H1,H1,H2,H2,H2,H3, including H2 in Higher Maths. We also require a minimum of H6 in Higher English or O3 in Ordinary English
Scottish Higher/Advanced Higher	AAB including Maths
Welsh Baccalaureate Advanced	Acceptable at grade B alongside AA in A Levels including A Level Mathematics.
Cambridge Pre-U Diploma	D3 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade A M2 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade B Global Perspectives and Short Courses are not accepted.
Access	Considered if taking a relevant subject. Check with Department or Admissions team.
International qualifications	Many countries have a different education system to that of the UK, meaning your qualifications may not meet our entry requirements. Completing your Foundation Certificate, such as that offered by the <u>University of Liverpool International College</u> , means you're guaranteed a place on your chosen course.

ALTERNATIVE ENTRY REQUIREMENTS

- If your qualification isn't listed here, or you're taking a combination of qualifications, <u>contact us</u> for advice
- <u>Applications from mature students</u> are welcome.

© University of Liverpool – a member of the Russell Group

Generated: 4 Feb 2025, 14:27