Course details
- Full-time: 12 months
Return to top
The Mechanical Engineering with Management MSc aims to develop your academic knowledge, skills and understanding of mechanical engineering and management topics to an advanced level. It will enable graduates to meet the needs of industry and to progress into senior positions with engineering management or related industrial sectors.
A postgraduate degree in Mechanical Engineering with Management is the basis for a career in a profession that offers an extremely wide choice of employment opportunities worldwide. Students engage in a number of activities that not only develop fundamental knowledge but also provide the tools to critically evaluate and apply knowledge to developing solutions for real world engineering challenges.
Mechanical engineering deals with the design, development, installation, operation and maintenance of anything that has moving parts. Mechanical engineers are needed in almost every industry from transport and Energy to Healthcare and sport. Mechanical Engineers have highly valued skills and are in demand worldwide. They have problem solving skills using reasoning, resourcefulness and innovative approaches whilst capable of careful attention to detail and understand how to work in multidisciplinary teams.
BEng Aerospace, Mechanical or Civil Engineering Graduates from University of Liverpool are not eligible for this programme.
This programme is fully accredited by the Institution of Mechanical Engineers.
Discover what you'll learn, what you'll study, and how you'll be taught and assessed.
The module provides students with the fundamental concepts of Engineering Fluid Mechanics, and in particular: the role of viscosity in fluid mechanics, including the no-slip condition and the concept of vorticity.
The basic principles of laminar and turbulent flow through pipes including definition and evaluation of the Fanning and Darcy friction factors.
The concept of a boundary layer, including separation and transition, and basic equations for friction factor in laminar and turbulent flow with zero pressure gradient.
The calculation methods of bluff-body drag using drag coefficients with qualitative explanations the potential-flow theory including the concept of irrationality and the principle of superposition.
The analysis of compressible flow through constant-area ducts accounting for friction or heat transfer and to use the Fanno – and Rayleigh-flow tables.
The analysis of external compressible flow including expansion and compression turns (Prandtl-Meyer expansions and oblique shock waves).
The module provides an understanding of nuclear engineering, with coverage going from the atomic scale through to the bulk scale. The topics will cover reactor dynamics, design and operation, lifetime behaviour, evolution of technologies and nuclear waste. For example, understanding the implications of the fission/fusion processes themselves on the behaviour of the core.
Project Management is a core skill for professional engineers of all types and a sound education in this subject area is required by the professional accrediting bodies. The knowledge and skills developed in this module will equip students for their future UG project work and for their careers ahead.
This module teaches students the theory of fundamental techniques in project management, risk management, and cost management.
In this modules student undertake a group "virtual project" in which they undertake all stages of project management involved n a major construction projects. The five virtual project tasks require students to apply their theoretical learning; and they provide an opportunity to develop key professional skills.
The Aims of this module are as follows:
To introduce the student to various aspects of advanced modern management.
To develop a knowledge and understanding of modern management tools.
To stimulate an appreciation of management and its importance in organisational success.
To develop technical writing skills for engineers. English Language Centre deliver the module for non-native English speakers, Engineering staff deliver identical syllabus, assessments and learning outcomes for other students.
To introduce the student to the latest 3D tools and techniques used by designers.
To develop a wider knowledge and understanding of integrated systems design.
To stimulate an appreciation of modern design and development methodologies.
In this module the students will gain a basic understanding of the Finite Element method and learn to use Abaqus Finite Element software. This software will then be used to analyse a variety of different problems which are relevant to both mechanical and civil engineers
The module will cover: how lasers work, what are the key beam properties of high power lasers, how the beam is deployed and delivered to the process/workpiece, safety in laser materials processing, and the working principles and industry practice for a range of laser processes.
To provide an overview on the role of additive manufacturing in new product development.
To develop a generic understanding on the principles and the complete process chain of additive manufacturing processes.
To provide an awareness on recent developments in additive manufacturing and associated technologies.
This module aims to understand advanced engineering materials, focusing on non-ferrous alloys and composite materials. It covers the processing, heat treatment, microstructure and properties of Al, Ti and Ni alloys. It introduces constituent materials, manufacturing methods, test methods and mechanical response of composite materials.
To reinforce and deepen the students’ understanding of:
— the mathematical description of fluid kinematics.
— the physical laws expressed by the equations of fluid motion.
— the assumptions associated with particular limits of the equations of fluid motion.
— simple exact solutions of the equations of motion.
— the governing equations for compressible flows.
— the differences between laminar and turbulent flow.
— the origins of laminar-turbulent flow transition.
— the physics of turbulence.
— the need for turbulence modelling and fundamental concepts of turbulence modelling.
To introduce students to advanced concepts in potential flow theory building upon existing knowledge of:
— the analytical generation of inviscid flow over two-dimensional objects using elementary potential flows.
— the analytical calculation of resulting forces and moments on lifting surfaces.
— the numerical computation of aerodynamic properties using panel methods
To enable student to:
— recognize the capabilities and weaknesses of CFD.
— choose appropriate levels of CFD analysis for a specific problem.
— use a suitable CFD package, including meshing and setting up a simulation.
— understand preliminary aerodynamic knowledge related to turbomachinery.
This module provides an understanding of the principles of advanced manufacturing techniques using lasers and how these are being explored through current/recent research and adopted by industry.
This modules discusses energy generation and usage, and how they complement each other. The topics are introduced in lectures that then lead onto a case study on a specific topic.
The module teaches the concepts of Entrepreneurship, Intrapreneurship, Company Infrastructure and Investment Proposals. It is taught using lectures, class questions, case studie sand a comprehensive coursework assignment. Successful students will have acquired knowledge and understanding at mastery level of the process and how itis executed in a modern industrial environment.
This module introduces the concepts required to maintain structural integrity. Topics covered are: detecting structural defects, predicting when defects will cause failure, and mitigating against failure.
The aim of this module is to provide an introduction to the tools and methods of Eco-design, Design for Manufacture and Assembly using real, everyday products as examples.
This module introduces students to the facilitating world of ‘Smart Materials’. The term ‘Smart Materials’ is used to define a broad collection of materials that have the in-built ability to ‘actuate’ in some way in response to external stimulus. Examples of ‘Smart materials’ include piezoelectrics, electrostrictive materials, shape memory alloys, ferrofluids, various biomimetic materials plus a host of others. This module looks at a selection of smart materials and considers the underlying reasons for the actuating behavior, key performance indicators that aid materials selection, aspects of manufacturing associated with the exploitation of the materials, plus engineering applications of these facilitating and highly useful materials.
The purpose of the project is to provide students with the opportunity to plan, carry out and control a research project at the forefront of their academic discipline, field of study or area of professional practice. The student will report findings both orally and in writing. Detailed instructions are provided in the PG handbook distributed at the outset of the programme.
You’ll learn across a variety of teaching methods, like lectures, seminars, and tutorials – some online and some in person. You’ll also access asynchronous online content on a weekly basis with personal tutorials and take part in group work projects, based on engineering grand challenges faced by global society today.
There’s opportunity to get hands-on too with active learning lab sessions, laser micromachining and lab work using special design software such as Finite Element.
Across your modules, you’ll be assessed in a number of different ways, including exams, lab activity, business plans, case studies, project journals, poster presentations, and both group and individual project work.
Your final project work will be based on a topic of industrial or scientific relevance, and will be carried out in laboratories in the University or at an approved placement in industry. You’ll examine this project in your dissertation and show evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.
We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.
The School of Engineering has a well-deserved and highly respected reputation for its excellent experimental and computational facilities. Our £32 million redevelopment includes the state-of-the-art ‘Active Learning Labs’, a cutting-edge teaching facility, one of the largest and best equipped in Europe.
Want to find out more about student life?
Chat with our student ambassadors and ask any questions you have.
We equip our students for rewarding careers and our graduates have found jobs in a wide range of industries and organisations, both in the UK and abroad.
Programmes include a strong practical element and incorporate the latest academic and industry research, enabling you to work effectively at the forefront of engineering.
Career Destinations are wide and varied. Some employers include:
Your tuition fees, funding your studies, and other costs to consider.
UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland) | |
---|---|
Full-time place, per year | £12,400 |
International fees | |
---|---|
Full-time place, per year | £28,000 |
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support.
If you're a UK national, or have settled status in the UK, you may be eligible to apply for a Postgraduate Loan worth up to £12,167 to help with course fees and living costs. Learn more about fees and funding.
We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This could include buying a laptop, books, or stationery.
Find out more about the additional study costs that may apply to this course.
We offer a range of scholarships and bursaries that could help pay your tuition and living expenses.
We've set the country or region your qualifications are from as United Kingdom. Change it here
The qualifications and exam results you'll need to apply for this course.
We've set the country or region your qualifications are from as United Kingdom. Change it here
Your qualification | Requirements |
---|---|
Postgraduate entry requirements |
We accept a 2:2 honours degree from a UK university, or an equivalent academic qualification from a similar non-UK institution. This should be in Engineering or Science with appropriate knowledge of core engineering science topics at bachelor degree level. |
International qualifications |
If you hold a bachelor’s degree or equivalent, but don’t meet our entry requirements, you could be eligible for a Pre-Master’s course. This is offered on campus at the University of Liverpool International College, in partnership with Kaplan International Pathways. It’s a specialist preparation course for postgraduate study, and when you pass the Pre-Master’s at the required level with good attendance, you’re guaranteed entry to a University of Liverpool master’s degree. |
You'll need to demonstrate competence in the use of English language, unless you’re from a majority English speaking country.
We accept a variety of international language tests and country-specific qualifications.
International applicants who do not meet the minimum required standard of English language can complete one of our Pre-Sessional English courses to achieve the required level.
English language qualification | Requirements |
---|---|
IELTS | 6.5 overall, with no component below 6.0 |
TOEFL iBT | 88 overall, with minimum scores of listening 19, writing 19, reading 19 and speaking 20. TOEFL Home Edition not accepted. |
Pearson PTE Academic | 61 overall, with no component below 59 |
LanguageCert Academic | 70 overall, with no skill below 65 |
PSI Skills for English | B2 Pass with Merit in all bands |
INDIA Standard XII | National Curriculum (CBSE/ISC) - 75% and above in English. Accepted State Boards - 80% and above in English. |
WAEC | C6 or above |
Do you need to complete a Pre-Sessional English course to meet the English language requirements for this course?
The length of Pre-Sessional English course you’ll need to take depends on your current level of English language ability.
Find out the length of Pre-Sessional English course you may require for this degree.
Discover more about the city and University.
Liverpool bursts with diversity and creativity which makes it ideal for you to undertake your postgraduate studies and access various opportunities for you and your family.
To fully immerse yourself in the university experience living in halls will keep you close to campus where you can always meet new people. Find your home away from home.
Discover what expenses are covered by the cost of your tuition fees and other finance-related information you may need regarding your studies at Liverpool.
Have a question about this course or studying with us? Our dedicated enquiries team can help.
Last updated 11 November 2024 / / Programme terms and conditions